用Python绘制著名的数学图片或动画,展示数学中的算法魅力。
Mandelbrot 集
代码:46 lines (34 sloc) 1.01 KB
- '''
- A fast Mandelbrot set wallpaper renderer
- reddit discussion: https://www.reddit.com/r/math/comments/2abwyt/smooth_colour_mandelbrot/
- '''
- import numpy as np
- from PIL import Image
- from numba import jit
- MAXITERS = 200
- RADIUS = 100
- @jit
- def color(z, i):
- v = np.log2(i + 1 - np.log2(np.log2(abs(z)))) / 5
- if v < 1.0:
- return v**4, v**2.5, v
- else:
- v = max(0, 2-v)
- return v, v**1.5, v**3
- @jit
- def iterate(c):
- z = 0j
- for i in range(MAXITERS):
- if z.real*z.real + z.imag*z.imag > RADIUS:
- return color(z, i)
- zz = z*z + c
- return 0, 0 ,0
- def main(xmin, xmax, ymin, ymax, width, height):
- x = np.linspace(xmin, xmax, width)
- y = np.linspace(ymax, ymin, height)
- z = x[None, :] + y[:, None]*1j
- red, green, blue = np.asarray(np.frompyfunc(iterate, 1, 3)(z)).astype(np.float)
- img = np.dstack((red, green, blue))
- Image.fromarray(np.uint8(img*255)).save('mandelbrot.png')
- if __name__ == '__main__':
- main(-2.1, 0.8, -1.16, 1.16, 1200, 960)
多米诺洗牌算法
代码链接:https://github.com/neozhaoliang/pywonderland/tree/master/src/domino
正二十面体万花筒
代码:53 lines (40 sloc) 1.24 KB
- '''
- A kaleidoscope pattern with icosahedral symmetry.
- '''
- import numpy as np
- from PIL import Image
- from matplotlib.colors import hsv_to_rgb
- def Klein(z):
- '''Klein's j-function'''
- return 1728 * (z * (z**10 + 11 * z**5 - 1))**5 / \
- (-(z**20 + 1) + 228 * (z**15 - z**5) - 494 * z**10)**3
- def RiemannSphere(z):
- '''
- map the complex plane to Riemann's sphere via stereographic projection
- '''
- t = 1 + z.real*z.real + z.imag*z.imag
- return 2*z.real/t, 2*z.imag/t, 2/t-1
- def Mobius(z):
- '''
- distort the result image by a mobius transformation
- '''
- return (z - 20)/(3*z + 1j)
- def main(imgsize):
- x = np.linspace(-6, 6, imgsize))
- y = np.linspace(6, -6, imgsize)
- z = x[None, :] + y[:, None]*1j
- z = RiemannSphere(Klein(Mobius(Klein(z))))
- # define colors in hsv space
- H = np.sin(z[0]*np.pi)**2
- S = np.cos(z[1]*np.pi)**2
- V = abs(np.sin(z[2]*np.pi) * np.cos(z[2]*np.pi))**0.2
- HSV = np.dstack((H, S, V))
- # transform to rgb space
- img = hsv_to_rgb(HSV)
- Image.fromarray(np.uint8(img*255)).save('kaleidoscope.png')
- if __name__ == '__main__':
- import time
- start = time.time()
- main(imgsize=800)
- end = time.time()
- print('runtime: {:3f} seconds'.format(end -
Newton 迭代分形
代码:46 lines (35 sloc) 1.05 KB
- import numpy as np
- import matplotlib.pyplot as plt
- from numba import jit
- # define functions manually, do not use numpy's poly1d funciton!
- @jit('complex64(complex64)', nopython=True)
- def f(z):
- # z*z*z is faster than z**3
- return z*z*z - 1
- @jit('complex64(complex64)', nopython=True)
- def df(z):
- return 3*z*z
- @jit('float64(complex64)', nopython=True)
- def iterate(z):
- num = 0
- while abs(f(z)) > 1e-4:
- w = z - f(z)/df(z)
- num += np.exp(-1/abs(w-z))
- z = w
- return num
- def render(imgsize):
- x = np.linspace(-1, 1, imgsize)
- y = np.linspace(1, -1, imgsize)
- z = x[None, :] + y[:, None] * 1j
- img = np.frompyfunc(iterate, 1, 1)(z).astype(np.float)
- fig = plt.figure(figsize=(imgsize/100.0, imgsize/100.0), dpi=100)
- ax = fig.add_axes([0, 0, 1, 1], aspect=1)
- ax.axis('off')
- ax.imshow(img, cmap='hot'))
- fig.savefig('newton.png')
- if __name__ == '__main__':
- import time
- start = time.time()
- render(imgsize=400)
- end = time.time()
- print('runtime: {:03f} seconds'.format(end
李代数E8 的根系
代码链接:https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/e8.py
模群的基本域
代码链接:
https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/modulargroup.py
彭罗斯铺砌
代码链接:
https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/penrose.py
Wilson 算法
代码链接:https://github.com/neozhaoliang/pywonderland/tree/master/src/wilson
反应扩散方程模拟
代码链接:https://github.com/neozhaoliang/pywonderland/tree/master/src/grayscott
120 胞腔
- # pylint: disable=unused-import
- # pylint: disable=undefined-variable
- from itertools import combinations, product
- import numpy as np
- from vapory import *
- class Penrose(object):
- GRIDS = [np.exp(2j * np.pi * i / 5) for i in range(5)]
- def __init__(self, num_lines, shift, thin_color, fat_color, **config):
- self.num_lines = num_lines
- self.shift = shift
- self.thin_color = thin_color
- self.fat_color = fat_color
- selfself.objs = self.compute_pov_objs(**config)
- def compute_pov_objs(self, **config):
- objects_pool = []
- for rhombi, color in self.tile():
- p1, p2, p3, p4 = rhombi
- polygon = Polygon(5, p1, p2, p3, p4, p1,
- Texture(Pigment('color', color), config['default']))
- objects_pool.append(polygon)
- for p, q in zip(rhombi, [p2, p3, p4, p1]):
- cylinder = Cylinder(p, q, config['edge_thickness'], config['edge_texture'])
- objects_pool.append(cylinder)
- for point in rhombi:
- x, y = point
- sphere = Sphere((x, y, 0), config['vertex_size'], config['vertex_texture'])
- objects_pool.append(sphere)
- return Object(Union(*objects_pool))
- def rhombus(self, r, s, kr, ks):
- if (s - r)**2 % 5 == 1:
- color = self.thin_color
- else:
- color = self.fat_color
- point = (Penrose.GRIDS[r] * (ks - self.shift[s])
- - Penrose.GRIDS[s] * (kr - self.shift[r])) *1j / Penrose.GRIDS[s-r].imag
- index = [np.ceil((point/grid).real + shift)
- for grid, shift in zip(Penrose.GRIDS, self.shift)]
- vertices = []
- for index[r], index[s] in [(kr, ks), (kr+1, ks), (kr+1, ks+1), (kr, ks+1)]:
- vertices.append(np.dot(index, Penrose.GRIDS))
- vertices_real = [(z.real, z.imag) for z in vertices]
- return vertices_real, color
- def tile(self):
- for r, s in combinations(range(5), 2):
- for kr, ks in product(range(-self.num_lines, self.num_lines+1), repeat=2):
- yield self.rhombus(r, s, kr, ks)
- def put_objs(self, *args):
- return Object(self.objs, *args)
原文:https://github.com/neozhaoliang/pywonderland/blob/master/README.md
【本文是51CTO专栏机构大数据文摘的原创译文,微信公众号“大数据文摘( id: BigDataDigest)”】