非数据科学家如何进行数据分析?

大数据 数据分析
大多数业务人员和分析师都将通过自助式BI工具来准备和分析大数据。虽然目前国内的发展现状无法在2018年达到自助式分析的局面,但这一趋势无法否认。即便不是数据科学家,但仍然可以轻松地分析数据,从中获取价值,才是大数据的正确打开方式。

Gartner报告称,到2018年,大多数业务人员和分析师都将通过自助式BI工具来准备和分析大数据。虽然目前国内的发展现状无法在2018年达到自助式分析的局面,但这一趋势无法否认。即便不是数据科学家,但仍然可以轻松地分析数据,从中获取价值,才是大数据的正确打开方式。

[[184810]]

大数据战略成功的关键是什么?

大数据战略成功的关键是从一开始就有一个明确的目标。如今公司收集和存储的数据量是难以想象得庞大,但这些数据的影响力是什么,公司如何从这些数据中获取价值,进而推动业务成功呢?

此外,公司需要合适的工具,帮助企业实现数据对所有人可见可用。如果只是对IT部门可见,数据的价值并不能真正地发挥出来,通过使数据对所有员工易于访问,公司可以进一步定义目标,并确定适当的数据来支持这些工作。

过去一年大数据发生了哪些变化?

大数据技术现在在任何地方都可用,并且用户很容易访问。自助式服务解决方案的兴起使公司能够以新的方式接受数据,并真正实施数据驱动战略。例如国外的Sisense,通过转向人工智能和物联网技术将数据洞察人性化,这些技术将数据带入员工自然工作环境的生活。

使用哪些技术或解决方案收集和分析数据?

在收集和分析数据方面,公司***是先评估想要解决的业务挑战,然后着手评估具体的解决方案。重要的是确保选择一种可复制复杂数据的技术,应对多个来源的大型的不同数据集,因为这才是当今公司面临的挑战。

哪些因素阻止公司实现大数据?

两个最常抑制公司实现数据潜力的问题,一是无法动态连接不同的数据源,如果数据都以孤岛方式呈现,这些数据是无用的。二是需要不断的人工交互或手动处理不同数据源之间的数据连接。数据洞察需要运行一定程度的自动化,以便人们可以专注于更高层次的活动,并使用数据来驱动业务。

大数据发展的***机会在哪里?

随着大数据的不断发展,数据的进一步传播将至关重要。公司需要打破大数据仅用于技术或执行团队的概念,将大数据,商业智能和分析技术带入全部员工队伍中。在数字时代,企业只会变得更加数据驱动,数据流畅性应该像阅读和写作一样具备易访问的性质。

开发人员需要具备哪些大数据技能?

大数据领域正在不断变化。我们看到了许多新的技术和创新,对于开发人员来说,不要期望完全掌握每种技术,也不应该因技术的不断发展而感到被威胁,应该对技术的发展感到兴奋!

责任编辑:武晓燕 来源: it168
相关推荐

2017-08-04 15:53:10

大数据真伪数据科学家

2020-12-09 06:25:19

ETL数据分析数据科学家

2015-10-08 10:09:42

2015-12-18 16:32:36

Taste Analy大数据云计算

2018-11-05 17:33:34

数据科学家数据分析数据

2012-03-16 13:12:06

2015-04-21 14:21:07

大数据数据分析

2019-04-16 15:06:41

数据科学职业BI

2018-02-28 15:03:03

数据科学家数据分析职业

2018-12-24 08:37:44

数据科学家数据模型

2015-08-28 09:22:07

数据科学

2019-08-13 21:44:46

数据科学家数据分析师数据

2020-06-15 15:43:23

数据科学家数据分析师数据科学

2012-12-26 10:51:20

数据科学家

2018-08-19 15:39:56

数据分析数据科学数据工程师

2020-07-30 23:25:07

数据分析师数据科学家职位

2019-01-15 14:21:13

Python数据分析数据

2018-10-16 14:37:34

数据科学家数据分析数据科学

2012-06-12 09:33:59

2023-03-20 13:39:00

数据分析开源
点赞
收藏

51CTO技术栈公众号