如何踏上人工智能之路(机器学习篇)

企业动态
AI这个词相信大家都非常熟悉了,在几年人公智能圈子格外热闹,先是阿法狗带了个好头,让大家重新对人工智能刮目相看。能取得今天这样的成绩绝非瞬间的爆发而是多少年日益的积累。今天咱们就来唠一唠如何进军人工智能的第一步-机器学习。

[[182834]]

如何打开机器学习的大门

AI这个词相信大家都非常熟悉了,在几年人公智能圈子格外热闹,先是阿法狗带了个好头,让大家重新对人工智能刮目相看。能取得今天这样的成绩绝非瞬间的爆发而是多少年日益的积累。今天咱们就来唠一唠如何进军人工智能的***步-机器学习。

我选Python玩AI:

Python语言已经非常火爆了,有句古话说得好,人生苦短,我用Python。在机器学习这个领域Python已经成为了主流,一方面因为这门语言简直太简单了,就我个人而言我搞过C++也玩过Java但是学起来用起来相对来说都比较难(说白了。。。就是我比较懒),但是python用起来简直不要太轻松,这也是推荐新手选择python的原因,非常容易上手,决没有恶心到家的指针。另一方面现在无论是做项目还是搞研究都非常追求效率,绝大多数情况下,很多代码都不需要自己从头到尾实现,而是调用已经非常完善的库了,这也是我觉得python***大的地方,可以很轻松的安装好一个想用的库,用这些库帮助我们解决问题。

对于刚入门的同学来说,肯定不会自己动手一步一步的去实现所有需要的技术代码,一个最直接的学习方法就是结合开源的框架,那么可以说机器学习和深度学习的开源框架基本都是python接口的,能用这些开源框架是我们学习的一个最基本的手段啦,所以重要的事情说三遍,python!python!python!

Python科学计算库-Numpy

说到机器学习,简单来说就是,数据输入进来,然后得出一个想要的结果。那么在中间我们计算的是什么呢,为了计算的高效和方便,通常都是将数据转换成矩阵的形式,也就是行作为样本,列作为特征。那么这些复杂的矩阵计算我们该怎么样完成呢?这里我们就需要Numpy了,它可以帮助我们很轻松的完成一系列的计算。如果你要跟数据打交道,那么Nmupy你肯定离不开了。

Python数据分析处理库-Pandas

在做任何一个机器学习算法之前都需要对数据进行预处理,也就是说数据是不纯净的,首先我们需要提取特征,再去除一些错误的有问题的样本,那么这些该快速完成呢,如果你喜欢偷懒要快速做完这些苦活,那么Pandas将会是一个非常不错的选择,在这里,你只需要简单的几行代码就可以对数据做好预处理的操作。

Python数据分析处理库-Matplotlib

数据分析和机器学习都离不开可视化展示,因为无论是做项目交付还是搞算法研究,都需要对自己的成果心里有个数吧,那么在这里我们就可以用Matplotlib来完成这个事,还是简单的几行代码,就能把结果轻松展示出来。

Python机器学习库-Scikit-Learn

这个武器十分有杀伤力,它就是我们机器学习必备的家伙,在这里我们可以选择任何你喜欢的机器学习算法,然后把数据输入进来,直接RUN就可以迭代计算了,简单太自动了,这个库十分强大,封装了大量机器学习算法以及评估和预处理等操作。轻轻松松几行,一个复杂的机器学习算法已经在跑了。

数据与实战

在机器学习这条路上,我们一定会跟数据打交道,这里十分推荐大家找一些真是的案例数据,用这些python库来实际的玩一玩。因为这些库都是开源的,咱们也可以自己打一些断点,从流程上一步一步走完整个机器学习的算法。

有很多同学都问过我,基础很一般能入门机器学习吗,听说机器学习对数学的要求很高,这该怎么办呀?说实话机器学习就是数学公式组成的,但是如果不搞科研的话我觉得能把流程和应用搞懂已经足够用了,并不推荐新手直接从数学开始进军,因为我觉得这个活太枯燥了,不见得大家都能有这种持之以恒的毅力坚持住。我觉得可以从案例和应用下手,先了解算法从头到尾做了一件什么事以及能用在什么地方,再回过头来去搞算法的推导效果应该会更好的、

学习路线图

这个路线图是针对咱们要入门的同学制定的,已然成神的同学们可不使用哦。

(一)搞定Python:

千万别花个把个月转攻这个,因为语言只是一个工具,我们完全可以边用边学,建议快速掌握基本语法,边练边学。

(二)机器学习算法:

机器学习有很多经典的算法,咱们不妨从最简单的K近邻开始,用python实现出这些经典的机器学习算法从流程的角度熟悉这些算法的原理。

(三)熟悉这些库:

如果大家想精通这些库,我觉得难度还是蛮大的,不妨先熟悉这些库能做什么,等咱们实际用的时候再去查语言就完全来得及。因为我用了这么久大部分函数还得每次用的时候现查,即便我知道该这么用还是会不放心查一查。

(四)案例与实战:

用真实数据来玩算法是学习的***方式。咱们可以找一些真实的数据来练练这些机器学习算法,先搞定算法的原理,再把数据应用进去,然后就是一步一步debug完成整个项目。

【本文是51CTO专栏作者唐宇迪的原创稿件,转载请注明出处】

戳这里,看该作者更多好文

责任编辑:武晓燕 来源: 51CTO专栏
相关推荐

2015-10-10 09:32:24

机器学习人工智能

2017-03-18 16:28:40

人工智能机器学习深度学习

2020-10-16 10:19:10

智能

2022-06-01 14:33:59

人工智能交通运输机器学习

2017-04-18 15:49:24

人工智能机器学习数据

2021-03-30 13:45:00

人工智能

2024-05-08 10:19:20

人工智能光纤网络AI

2022-04-06 11:55:12

模型机器学习训练

2022-08-04 22:18:12

人工智能文艺创作

2021-04-16 09:53:45

人工智能机器学习深度学习

2020-09-07 11:28:09

人工智能机器学习AI

2020-11-12 10:01:55

人工智能

2023-10-11 15:07:30

2019-11-27 10:30:44

人工智能机器学习SaaS

2021-10-08 10:26:37

人工智能机器学习AI

2023-03-22 13:08:43

人工智能机器学习

2023-03-22 11:10:47

2021-05-20 10:38:07

人工智能AI机器学习

2021-02-22 10:59:43

人工智能机器学习深度学习

2017-09-05 14:23:22

人工智能机器翻译神经网络
点赞
收藏

51CTO技术栈公众号