大数据竞赛平台——Kaggle入门篇

大数据
这篇文章适合那些刚接触Kaggle、想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文。本文分为两部分介绍Kaggle,第一部分简单介绍Kaggle,第二部分将展示解决一个竞赛项目的全过程。如有错误,请指正!

这篇文章适合那些刚接触Kaggle、想尽快熟悉Kaggle并且独立完成一个竞赛项目的网友,对于已经在Kaggle上参赛过的网友来说,大可不必耗费时间阅读本文。本文分为两部分介绍Kaggle,***部分简单介绍Kaggle,第二部分将展示解决一个竞赛项目的全过程。如有错误,请指正!

[[182402]]

1、Kaggle简介

Kaggle是一个数据分析的竞赛平台,网址:https://www.kaggle.com/

企业或者研究者可以将数据、问题描述、期望的指标发布到Kaggle上,以竞赛的形式向广大的数据科学家征集解决方

案,类似于KDD-CUP(国际知识发现和数据挖掘竞赛)。Kaggle上的参赛者将数据下载下来,分析数据,然后运用机

器学习、数据挖掘等知识,建立算法模型,解决问题得出结果,***将结果提交,如果提交的结果符合指标要求并且在参赛者中排名***,将获得比赛丰厚的奖金。更多内容可以参阅:大数据众包平台

下面我以图文的形式介绍Kaggle:

进入Kaggle网站:

大数据竞赛平台——Kaggle入门篇

这是当前正在火热进行的有奖比赛,有冠军杯形状的是“Featured”,译为“号召”,召集数据科学高手去参赛。下面那个灰色的有试剂瓶形状的是“Research”,奖金少一点。这两个类别的比赛是有奖竞赛,难度自然不小,作为入门者,应该先做练习赛:

大数据竞赛平台——Kaggle入门篇

左图的比赛是“101”,右图的是“Playground”,都是练习赛,适合入门。入门Kaggle***的方法就是独立完成101和playground这两个级别的竞赛项目。本文的第二部分将选101中的“Digit Recognition”作为讲解。

点击进入赛题“Digit Recognition”:

大数据竞赛平台——Kaggle入门篇

这是一个识别数字0~9的练习赛,“Competition Details“是这个比赛的描述,说明参赛者需要解决的问题。”Get the Data“是数据下载,参赛者用这些数据来训练自己的模型,得出结果,数据一般都是以csv格式给出:

大数据竞赛平台——Kaggle入门篇

其中,train.csv就是训练样本,test.csv就是测试样本,由于这个是训练赛,所以还提供了两种解决方案,knn_benchmark.R和rf_benchmark.R,前者是用R语。言写的knn算法程序,后者是用R语言写的随机森林算法程序,它们的结果分别是knn_benchmark.csv和rf_benchmark.csv。关于csv格式文件,我前一篇文章有详述:【Python】csv模块的使用。

得出结果后,接下来就是提交结果”Make a submission“:

大数据竞赛平台——Kaggle入门篇

要求提交的文件是csv格式的,假如你将结果保存在result.csv,那么点击”Click or drop submission here“,选中result.csv文件上传即可,系统将测试你提交的结果的准确率,然后排名。

另外,除了“Competition Details“、”Get the Data“、”Make a submission“,侧边栏的”Home“、”Information“、”Forum”等,也提供了关于竞赛的一些相关信息,包括排名、规则、辅导……

【以上是***部分,暂且写这么多,有补充的以后再更】

2、竞赛项目解题全过程

(1)知识准备

首先,想解决上面的题目,还是需要一点ML算法的基础的,另外就是要会用编程语言和相应的第三方库来实现算法,常用的有:

Python以及对应的库numpy、scipy、scikit-learn(实现了ML的一些算法,可以直接用)、theano(DeepLearning的算法包)。

R语言、weka

如果用到深度学习的算法,cuda、caffe也可以用。

总之,使用什么编程语言、什么平台、什么第三方库都无所谓,无论你用什么方法,Kaggle只需要你线上提交结果,线下你如何实现算法是没有限制的。

Ok,下面讲解题过程,以”Digit Recognition“为例,数字识别这个问题我之前写过两篇文章,分别用kNN算法和Logistic算法去实现,有完整的代码,有兴趣可以阅读:kNN算法实现数字识别、 Logistic回归实现数字识别

(2)Digit Recognition解题过程

下面我将采用kNN算法来解决Kaggle上的这道Digit Recognition训练题。上面提到,我之前用kNN算法实现过,这里我将直接copy之前的算法的核心代码,核心代码是关于kNN算法的主体实现,我不再赘述,我把重点放在处理数据上。

以下工程基于Python、numpy

获取数据

从”Get the Data“下载以下三个csv文件:

大数据竞赛平台——Kaggle入门篇

分析train.csv数据

train.csv是训练样本集,大小42001*785,***行是文字描述,所以实际的样本数据大小是42000*785,其中***列的每一个数字是它对应行的label,可以将***列单独取出来,得到42000*1的向量trainLabel,剩下的就是42000*784的特征向量集trainData,所以从train.csv可以获取两个矩阵trainLabel、trainData。

下面给出代码,另外关于如何从csv文件中读取数据,参阅:csv模块的使用

大数据竞赛平台——Kaggle入门篇

这里还有两个函数需要说明一下,toInt()函数,是将字符串转换为整数,因为从csv文件读取出来的,是字符串类型的,比如‘253’,而我们接下来运算需要的是整数类型的,因此要转换,int(‘253’)=253。toInt()函数如下:

大数据竞赛平台——Kaggle入门篇

nomalizing()函数做的工作是归一化,因为train.csv里面提供的表示图像的数据是0~255的,为了简化运算,我们可以将其转化为二值图像,因此将所有非0的数字,即1~255都归一化为1。nomalizing()函数如下:

大数据竞赛平台——Kaggle入门篇

分析test.csv数据

test.csv里的数据大小是28001*784,***行是文字描述,因此实际的测试数据样本是28000*784,与train.csv不同,没有label,28000*784即28000个测试样本,我们要做的工作就是为这28000个测试样本找出正确的label。所以从test.csv我们可以得到测试样本集testData,代码如下:

大数据竞赛平台——Kaggle入门篇

分析knn_benchmark.csv

前面已经提到,由于digit recognition是训练赛,所以这个文件是官方给出的参考结果,本来可以不理这个文件的,但是我下面为了对比自己的训练结果,所以也把knn_benchmark.csv这个文件读取出来,这个文件里的数据是28001*2,***行是文字说明,可以去掉,***列表示图片序号1~28000,第二列是图片对应的数字。从knn_benchmark.csv可以得到28000*1的测试结果矩阵testResult,代码:

大数据竞赛平台——Kaggle入门篇

到这里,数据分析和处理已经完成,我们获得的矩阵有:trainData、trainLabel、testData、testResult

算法设计

这里我们采用kNN算法来分类,核心代码:

大数据竞赛平台——Kaggle入门篇

关于这个函数,参考:kNN算法实现数字识别

简单说明一下,inX就是输入的单个样本,是一个特征向量。dataSet是训练样本,对应上面的trainData,labels对应trainLabel,k是knn算法选定的k,一般选择0~20之间的数字。这个函数将返回inX的label,即图片inX对应的数字。

对于测试集里28000个样本,调用28000次这个函数即可。

保存结果

kaggle上要求提交的文件格式是csv,上面我们得到了28000个测试样本的label,必须将其保存成csv格式文件才可以提交,关于csv,参考:【Python】csv模块的使用。

代码:

大数据竞赛平台——Kaggle入门篇

综合各函数

上面各个函数已经做完了所有需要做的工作,现在需要写一个函数将它们组合起来解决digit recognition这个题目。我们写一个handwritingClassTest函数,运行这个函数,就可以得到训练结果result.csv。

大数据竞赛平台——Kaggle入门篇

运行这个函数,可以得到result.csv文件:

大数据竞赛平台——Kaggle入门篇

2 0 9 9 3 7 0 3…….就是每个图片对应的数字。与参考结果knn_benchmark.csv比较一下:

大数据竞赛平台——Kaggle入门篇

28000个样本中有1004个与kknn_benchmark.csv中的不一样。错误率为3.5%,这个效果并不好,原因是我并未将所有训练样本都拿来训练,因为太花时间,我只取一半的训练样本来训练,即上面的结果对应的代码是:

  1. [python] view plain copyclassifierResult = classify(testData[i], trainData[0:20000], trainLabel[0:20000], 5) 

训练一半的样本,程序跑了将近70分钟(在个人PC上)。

提交结果

将result.csv整理成kknn_benchmark.csv那种格式,即加入***行文字说明,加入***列的图片序号,然后make a submission,结果准确率96.5%:

大数据竞赛平台——Kaggle入门篇

下载工程代码:github地址

责任编辑:未丽燕 来源: 36大数据
相关推荐

2017-09-12 10:26:47

springbootmaven结构

2011-01-18 17:00:31

Postfix入门

2018-08-15 13:56:47

Kaggle数据挖掘项目

2019-04-10 09:44:05

2013-01-18 10:04:33

大数据分析

2020-11-16 10:19:33

Java

2016-09-06 17:43:12

SwiftCloudKit开发

2009-06-09 13:02:30

NetBeans使用教程

2015-07-30 09:43:10

独立游戏开发入门

2022-01-27 09:35:45

whiledo-while循环Java基础

2020-11-13 07:22:46

Java基础While

2012-01-17 10:47:07

jQuery

2022-03-28 09:31:58

for循环语句

2022-07-06 07:57:37

Zookeeper分布式服务框架

2009-06-15 17:22:36

JBoss Seam

2022-03-10 09:33:21

Java数组初始化

2018-12-21 12:25:08

2010-09-08 13:42:06

2020-11-19 10:36:16

Java基础方法

2021-12-21 09:02:31

Matplotlib Python可视化
点赞
收藏

51CTO技术栈公众号