近日,Intel 开源了 BigDL,这是一个基于 Apache Spark 的分布式深度学习库。使用 BigDL ,用户可以将他们的深度学习应用程序作为标准的 Spark 程序,它可以直接运行在现有的 Spark 或 Hadoop 集群之上。
特性:
- 丰富的深度学习支持。BigDL 模仿 Torch,提供对深度学习的全方位支持,包括数值计算(通过Tensor)和高层次神经网络。此外,用户可以使用 BigDL 将预训练的 Caffe 或 Torch 模型加载到 Spark 程序中。
- 极其高的性能。为了达到高性能,BigDL 在每个 Spark 任务中使用 Intel MKL和多线程编程。因此,它比单节点 Xeon 上的开箱即用的 Caffe、Torch 或 TensorFlow 快几个数量级。
- 有效地横向扩展。 BigDL 可以通过利用 Apache Spark 以及高效实施同步 SGD, 全面减少 Spark 上的通信,有效地向外扩展,以“大数据规模”执行数据分析。
使用场景:
- 你想要在在大数据云(Hadoop/Spark)分析(存储在如 HDFS、HBase、Hive上的)海量数据。
- 你想向你的大数据(Spark)程序和/或工作流添加深度学习功能(训练或者预测)。
- 你想利用已有的 Hadoop/Spark 集群来运行深度学习程序,然后可以与其他工作负载动态共享(例如,ETL、数据仓库、功能引擎、经典机器学习、图像分析等)。