深度学习入门课程学习笔记04 softmax分类器

企业动态
softmax:这个分类器可以说是咱们深度学习领域最常见的一个分类器了,如果大家对逻辑回归有基础的话那么这个softmax分类器可以当成一个多分类的逻辑回归。

前向传播之-softmax

softmax:这个分类器可以说是咱们深度学习领域最常见的一个分类器了,如果大家对逻辑回归有基础的话那么这个softmax分类器可以当成一个多分类的逻辑回归。

sigmoid:上图就是咱们这个sigmoid函数了,这个函数很重要无论在softmax还是在咱们之后会讲到的激活函数上,所以咱们先来看看这个函数是干什么用的,首先咱们先来看它的自变量X得到取值范围,可以看到咱们的X可以取正无穷到负无穷的一切实数,那么对应的Y也就是值域的范围是从0到1的。那么对于一个任意的输入X1我们都可以得到一个对应的值Y1,这个Y1是在0到1之间的一个数,也就是我们可以把所有的值都压缩到0到1这个区间内,结合咱们之前的得分函数,一个输入对于每一个类别的得分X,我们都可以把这个得分映射到[0,1]区间内,也就是把我们的得分数值转成了相应的概率值。

softmax-loss计算:这一系列的公式其实就告诉了咱们一件事咱们这个分类器最终的LOSS值是如何计算出来的,首先咱们对应于一个输入计算出了它属于每一个类别的得分数值,然后再用上面讲的sigmoid函数把所有的得分数值映射成一个概率值,有了概率值之后loss的计算就是对最终正确分类所占的概率求一个LOG值再取负号就OK了。

动手算:咱们现在就来动手算一下这个LOSS值是什么计算的,首先对每个得分数值计算其指数次幂,然后对于得到的所有值再做一个归一化的操作,***把正确分类的那个概率值带到LOSS计算公式中就性啦。

SVM和SOFTMA对比:从图中可以到最明显的区别就是LOSS值的计算方式,SVM是计算的分值的一个差值情况,SOFTMAX看的则是分类的准确率。这里就不详细推导他们优缺点了,可以告诉大家的是SOFTMAX对错误的分类敏感程度更高,其实SOFTMAX是一个永不满足的分类器,它的LOSS始终存在的,感兴趣的同学可以自己算一算LOSS的流程就知道了,所以在深度学习领域我们使用的更多的是SOFTMAX分类器。

【本文是51CTO专栏作者唐宇迪的原创稿件,转载请注明出处】

 

戳这里,看该作者更多好文

责任编辑:武晓燕 来源: csdn博客
相关推荐

2016-11-01 15:32:43

深度学习

2016-12-27 14:59:50

得分函数参数

2016-12-27 16:31:34

反向传播课程

2016-12-27 16:04:39

最优化课程笔记

2016-12-27 15:16:49

损失函数课程

2016-12-27 14:24:57

课程笔记神经网络

2017-08-16 10:34:56

Andrew NGLogistic回归

2024-09-11 08:34:28

2016-12-30 13:23:30

AI 初学者分类

2010-06-11 17:06:18

UML精粹

2014-09-15 10:15:32

UCS思科

2014-09-15 10:44:28

思科UCSUCS服务器

2016-12-27 14:06:36

Python代码基础

2021-04-13 10:25:33

人工智能深度学习

2017-08-24 10:54:29

Andrew NG深度学习操作

2017-05-10 09:26:41

机器学习深度学习

2023-05-14 22:35:24

TensorFlowKeras深度学习

2021-07-23 08:00:00

深度学习框架模型

2023-03-19 17:24:43

2011-08-31 15:59:10

LUAWeb 开发
点赞
收藏

51CTO技术栈公众号