2017年大数据的十大发展趋势

大数据
2016年,近40%的公司正在实施和扩展大数据技术应用,另有30%的公司计划在未来12个月内采用大数据技术。2016年NewVantage Partners的大数据管理调查发现,62.5%的公司现在至少有一个大数据项目投入生产,只有5.4%的公司没有大数据应用计划,或者是没有正在进行的大数据项目。

佛瑞斯特研究公司(Forrester)的研究人员发现,2016年,近40%的公司正在实施和扩展大数据技术应用,另有30%的公司计划在未来12个月内采用大数据技术。2016年NewVantage Partners的大数据管理调查发现,62.5%的公司现在至少有一个大数据项目投入生产,只有5.4%的公司没有大数据应用计划,或者是没有正在进行的大数据项目。

研究人员称,会有越来越多的公司加速采用大数据技术。互联网数据中心(IDC)预测,到2020年大数据和分析技术市场,将从今年的1301亿美元增加至2030亿美元。“公司对数据可用性要求的提高,新一代技术的出现与发展,以及数据驱动决策带来的文化转变,都继续刺激着市场对大数据和分析技术服务的需求”, IDC副总裁Dan Vesset表示。 “2015年该市场全球收入为1,220亿美元,预计到2016年,这一数字将增长11.3%,并预计在2020年以11.7%的复合年增长率(CAGR)继续增长。”

编者注:CAGR并不等于现实生活中GR(Growth Rate)的数值。它的目的是描述一个投资回报率转变成一个较稳定的投资回报所得到的预想值。我们可以认为CAGR平滑了回报曲线,不会为短期回报的剧变而迷失。

虽然大数据市场将会继续增长这一点毋庸置疑,但企业应该如何应用大数据呢?目前还没有一个清楚的答案。新的大数据技术正在进入市场,而一些旧技术的使用还在继续增长。本文涵盖大数据未来发展的十大趋势,这些趋势可能对2017年及以后的大数据市场产生极大影响。

2017年大数据的十大发展趋势

大数据发展趋势

专家预计,机器学习、预测分析、物联网和边缘计算将对2017年及以后的大数据项目产生深远影响。

1开放源码

Apache Hadoop、Spark等开源应用程序已经在大数据领域占据了主导地位。一项调查发现,预计到今年年底,近60%企业的Hadoop集群将投入生产。佛瑞斯特的研究显示,Hadoop的使用率正以每年32.9%的速度增长。 专家表示,2017年许多企业将继续扩大他们的Hadoop和NoSQL技术应用,并寻找方法来提高处理大数据的速度。

2017年大数据的十大发展趋势

2内存技术

很多公司正试图加速大数据处理过程,它们采用的一项技术就是内存技术。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而现代内存技术将数据存储在RAM中,这样大大提高了数据存储的速度。佛瑞斯特研究的报告中预测,内存数据架构每年将增长29.2%。 目前,有很多企业提供内存数据库技术,最著名的有SAP、IBM和Pivotal。

2017年大数据的十大发展趋势

3机器学习

随着大数据分析能力的不断提高,很多企业开始投资机器学习(ML)。机器学习是人工智能的一项分支,允许计算机在没有明确编码的情况下学习新事物。换句话说,就是分析大数据以得出结论。 高德纳咨询公司(Gartner)称,机器学习是2017年十大战略技术趋势之一。它指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,创建出能够理解、学习、预测、适应,甚至可以自主操作的系统。

2017年大数据的十大发展趋势

4预测分析

预测分析与机器学习密切相关,事实上ML系统通常为预测分析软件提供动力。在早期大数据分析中,企业通过审查他们的数据来发现过去发生了什么,后来他们开始使用分析工具来调查这些事情发生的原因。预测分析则更进一步,使用大数据分析预测未来会发生什么。 普华永道(PwC)2016年调查显示,目前仅为29%的公司使用预测分析技术,这个数量并不多。同时,许多供应商最近都推出了预测分析工具。随着企业越来越意识到预测分析工具的强大功能,这一数字在未来几年可能会出现激增。

2017年大数据的十大发展趋势

5智能app

企业使用机器学习和AI技术的另一种方式是创建智能应用程序。这些应用程序采用大数据分析技术来分析用户过往的行为,为用户提供个性化的服务。推荐引擎就是一个大家非常熟悉的例子。 在2017年十大战略技术趋势列表中,高德纳公司把智能应用列在了第二位。高德纳公司副总裁大卫·希尔里(David Cearley)说:“未来10年,几乎每个app,每个应用程序和服务都将一定程度上应用AI。

2017年大数据的十大发展趋势

6智能安保

许多企业也将大数据分析纳入安全战略。企业的安全日志数据提供了以往未遂的网络攻击信息,企业可以利用这些数据来预测并防止未来可能发生的攻击,以减少攻击造成的损失。一些公司正将其安全信息和事件管理软件(SIEM)与大数据平台(如Hadoop)结合起来。还有一些公司选择向能够提供大数据分析能力产品的公司求助。

 


7物联网

2017年大数据的十大发展趋势

物联网也可能对大数据产生相当大的影响。根据IDC 2016年9月的报告,“31.4%的受访公司推出了物联网解决方案,另有43%希望在未来12个月内部署物联网解决方案。” 随着这些新设备和应用程序上线,许多公司需要新的技术和系统,才能够处理和感知来自物联网的大量数据。

2017年大数据的十大发展趋势

8边缘计算

边缘计算是一种可以帮助公司处理物联网大数据的新技术。在边缘计算中,大数据分析非常接近物联网设备和传感器,而不是数据中心或云。对于企业来说,这种方式的优点显而易见。因为在网络上流动的数据较少,可以提高网络性能并节省云计算成本。它还允许公司删除过期的和无价值的物联网数据,从而降低存储和基础架构成本。边缘计算还可以加快分析过程,使决策者能够更快地洞察情况并采取行动。

2017年大数据的十大发展趋势

9高薪职业

对于IT工作者来说,大数据的发展意味着大数据技能人才的高需求。IDC称,“到2018年,美国将有181,000个深度分析岗位,是数据管理和数据解读相关技能岗位数量的五倍。” 由于人才缺口过大,罗伯特·哈夫技术公司预测,到2017年数据科学家的平均薪资将增长6.5%,年薪在116,000美元到163,500美元之间(当然这是美国的标准,中国国内目前尚未统计)。同样,明年大数据工程师的薪资也将增长5.8%,在135,000美元到196,000美元之间。

2017年大数据的十大发展趋势

10自助服务

由于聘请高级专家的成本过高,许多公司开始转向数据分析工具。IDC先前预测,“视觉数据发现工具的增长速度将比其他商业智能(BI)市场快2.5倍,到2018年,所有企业都将投资终端用户自助服务。

2017年大数据的十大发展趋势

一些大数据供应商已经推出了具有“自助服务”能力的大数据分析工具,专家预计这种趋势将持续到2017年及以后。 数据分析过程中,信息技术的参与将越来越少,大数据分析将越来越多地融入到所有部门工作人员的工作方式之中。

责任编辑:未丽燕 来源: 网络大数据
相关推荐

2016-11-30 08:26:00

科技新闻早报

2017-01-17 16:30:56

2012-01-17 09:16:03

云计算数据云存储

2019-02-11 12:02:25

大数据智能云计算

2011-07-22 11:03:17

移动设备

2019-08-09 09:00:00

区块链加密货币比特币

2016-12-02 08:46:55

智能手Zen芯片DevOps

2012-06-12 10:47:23

Gartner基础设施

2016-11-18 17:54:26

2012-06-08 11:42:21

Gartner基础设施

2023-12-25 15:35:01

安全智能安防人工智能

2021-09-14 10:32:51

数字化转型互联网技术

2022-04-18 14:40:20

数字化转型企业数字经济

2017-01-07 11:27:57

大数据结构化数据Hadoop

2016-11-28 15:01:08

大数据数据可视化

2019-10-16 14:10:24

人工智能深度学习技术

2019-04-24 16:20:29

2015-10-12 11:30:57

大数据趋势

2018-03-21 06:08:39

无线5G网络

2018-03-27 14:45:28

点赞
收藏

51CTO技术栈公众号