谈一谈如何在Python开发中拒绝SSRF漏洞

安全 漏洞
特别是这两年,大量利用SSRF攻击内网服务的案例被爆出来,导致SSRF漏洞慢慢受到重视。这就给Web应用开发者提出了一个难题:如何在保证业务正常的情况下防御SSRF漏洞?

一 、SSRF漏洞常见防御手法及绕过方法

SSRF是一种常见的Web漏洞,通常存在于需要请求外部内容的逻辑中,比如本地化网络图片、XML解析时的外部实体注入、软件的离线下载等。当攻击者传入一个未经验证的URL,后端代码直接请求这个URL,将会造成SSRF漏洞。

具体危害体现在以下几点上:

URL为内网IP或域名,攻击者将可以通过SSRF漏洞扫描目标内网,查找内网内的漏洞,并想办法反弹权限

URL中包含端口,攻击者将可以扫描并发现内网中机器的其他服务,再进一步进行利用

当请求方法允许其他协议的时候,将可能利用gopher、file等协议进行第三方服务利用,如利用内网的redis获取权限、利用fastcgi进行getshell等

特别是这两年,大量利用SSRF攻击内网服务的案例被爆出来,导致SSRF漏洞慢慢受到重视。这就给Web应用开发者提出了一个难题:如何在保证业务正常的情况下防御SSRF漏洞?

很多开发者认为,只要检查一下请求url的host不为内网IP,即可防御SSRF。这个观点其实提出了两个技术要点:

1.如何检查IP是否为内网IP

2.如何获取真正请求的host

于是,攻击者通过这两个技术要点,针对性地想出了很多绕过方法。

二、 如何检查IP是否为内网IP

这实际上是很多开发者面临的第一个问题,很多新手甚至连内网IP常用的段是多少也不清楚。

何谓内网IP,实际上并没有一个硬性的规定,多少到多少段必须设置为内网。有的管理员可能会将内网的IP设置为233.233.233.0/24段,当然这是一个比较极端的例子。

通常我们会将以下三个段设置为内网IP段,所有内网内的机器分配到的IP是在这些段中:

  1. 192.168.0.0/16 => 192.168.0.0 ~ 192.168.255.255 
  2. 10.0.0.0/8 => 10.0.0.0 ~ 10.255.255.255 
  3. 172.16.0.0/12 => 172.16.0.0 ~ 172.31.255.255 

所以通常,我们只需要判断目标IP不在这三个段,另外还包括一个 127.0.0.0/8 段即可。

很多人会忘记 127.0.0.0/8 ,认为本地地址就是 127.0.0.1 ,实际上本地回环包括了整个127段。你可以访问http://127.233.233.233/,会发现和请求127.0.0.1是一个结果:

所以我们需要防御的实际上是4个段,只要IP不落在这4个段中,就认为是“安全”的。

网上一些开发者会选择使用“正则”的方式判断目标IP是否在这四个段中,这种判断方法通常是会遗漏或误判的,比如如下代码:

这是Sec-News最老版本判断内网IP的方法,里面使用正则判断IP是否在内网的几个段中。这个正则也是我当时临时在网上搜的,很明显这里存在多个绕过的问题:

1. 利用八进制IP地址绕过

2. 利用十六进制IP地址绕过

3. 利用十进制的IP地址绕过

4. 利用IP地址的省略写法绕过

这四种方式我们可以依次试试:

四种写法(5个例子):012.0.0.1 、 0xa.0.0.1 、 167772161 、 10.1 、 0xA000001 实际上都请求的是10.0.0.1,但他们一个都匹配不上上述正则表达式。

更聪明一点的人是不会用正则表达式来检测IP的(也许这类人并不知道内网IP的正则该怎么写)。Wordpress的做法是,先将IP地址规范化,然后用“.”将其分割成数组parts,然后根据parts[0]和parts[1]的取值来判断:

其实也略显麻烦,而且曾经也出现过用进制方法绕过的案例( WordPress <4.5 SSRF 分析 ),不推荐使用。

我后来选择了一种更为简单的方法。众所周知,IP地址是可以转换成一个整数的,在PHP中调用ip2long函数即可转换,在Python使用inet_aton去转换。

而且IP地址是和2^32内的整数一一对应的,也就是说0.0.0.0 == 0,255.255.255.255 == 2^32 - 1。所以,我们判断一个IP是否在某个IP段内,只需将IP段的起始值、目标IP值全部转换为整数,然后比较大小即可。

于是,我们可以将之前的正则匹配的方法修改为如下方法:

这就是一个最简单的方法,也最容易理解。

假如你懂一点掩码的知识,你应该知道IP地址的掩码实际上就是(32 - IP地址所代表的数字的末尾bit数)。所以,我们只需要保证目标IP和内网边界IP的前“掩码”位bit相等即可。借助位运算,将以上判断修改地更加简单:

  1. from socket import inet_aton 
  2. from struct import unpack 
  3.   
  4. def ip2long(ip_addr): 
  5.     return unpack("!L", inet_aton(ip_addr))[0] 
  6.       
  7. def is_inner_ipaddress(ip): 
  8.     ip = ip2long(ip)     
  9.     return ip2long('127.0.0.0') >> 24 == ip >> 24 or \ 
  10.            ip2long('10.0.0.0') >> 24 == ip >> 24 or \         
  11.            ip2long('172.16.0.0') >> 20 == ip >> 20 or \        
  12.            ip2long('192.168.0.0') >> 16 == ip >> 16 

以上代码也就是Python中判断一个IP是否是内网IP的最终方法,使用时调用is_inner_ipaddress(...)即可(注意自己编写捕捉异常的代码)。

三、 host获取与绕过

如何获取"真正请求"的Host,这里需要考虑三个问题:

1. 如何正确的获取用户输入的URL的Host?

2. 只要Host只要不是内网IP即可吗?

3. 只要Host指向的IP不是内网IP即可吗?

如何正确的获取用户输入的URL的Host?

第一个问题,看起来很简单,但实际上有很多网站在获取Host上犯过一些错误。最常见的就是,使用http://233.233.233.233@10.0.0.1:8080/、http://10.0.0.1#233.233.233.233这样的URL,让后端认为其Host是233.233.233.233,实际上请求的却是10.0.0.1。这种方法利用的是程序员对URL解析的错误,有很多程序员甚至会用正则去解析URL。

在Python 3下,正确获取一个URL的Host的方法:

  1. from urllib.parse import urlparse 
  2.   
  3. url = 'https://10.0.0.1/index.php' 
  4. urlparse(url).hostname 

这一步一定不能犯错,否则后面的工作就白做了。

只要Host只要不是内网IP即可吗?

第二个问题,只要检查一下我们获取到的Host是否是内网IP,即可防御SSRF漏洞么?

答案是否定的,原因是,Host可能是IP形式,也可能是域名形式。如果Host是域名形式,我们是没法直接比对的。只要其解析到内网IP上,就可以绕过我们的is_inner_ipaddress了。

网上有个服务 http://xip.io ,这是一个“神奇”的域名,它会自动将包含某个IP地址的子域名解析到该IP。比如 127.0.0.1.xip.io ,将会自动解析到127.0.0.1,www.10.0.0.1.xip.io将会解析到10.0.0.1:

这个域名极大的方便了我们进行SSRF漏洞的测试,当我们请求http://127.0.0.1.xip.io/info.php的时候,表面上请求的Host是127.0.0.1.xip.io,此时执行is_inner_ipaddress('127.0.0.1.xip.io')是不会返回True的。但实际上请求的却是127.0.0.1,这是一个标准的内网IP。

所以,在检查Host的时候,我们需要将Host解析为具体IP,再进行判断,代码如下:

  1. import socket 
  2.  import re 
  3.  from urllib.parse import urlparse 
  4.  from socket import inet_aton 
  5.  from struct import unpack 
  6.    
  7.  def check_ssrf(url): 
  8.      hostname = urlparse(url).hostname 
  9.        
  10.      def ip2long(ip_addr):     
  11.          return unpack("!L", inet_aton(ip_addr))[0]     
  12.            
  13.      def is_inner_ipaddress(ip): 
  14.          ip = ip2long(ip)     
  15.          return ip2long('127.0.0.0') >> 24 == ip >> 24 or \       
  16.                 ip2long('10.0.0.0') >> 24 == ip >> 24 or \         
  17.                 ip2long('172.16.0.0') >> 20 == ip >> 20 or \    
  18.                 ip2long('192.168.0.0') >> 16 == ip >> 16 
  19.                   
  20.       try: 
  21.           if not re.match(r"^https?://.*/.*$", url):      
  22.                  raise BaseException("url format error")  
  23.           ip_address = socket.getaddrinfo(hostname, 'http')[0][4][0] 
  24.           if is_inner_ipaddress(ip_address):        
  25.                raise BaseException("inner ip address attack")    
  26.           return True, "success" 
  27.        except BaseException as e:    
  28.           return False, str(e)     
  29.        except:     
  30.           return False, "unknow error" 

首先判断url是否是一个HTTP协议的URL(如果不检查,攻击者可能会利用file、gopher等协议进行攻击),然后获取url的host,并解析该host,最终将解析完成的IP放入is_inner_ipaddress函数中检查是否是内网IP。

只要Host指向的IP不是内网IP即可吗?

第三个问题,是不是做了以上工作,解析并判断了Host指向的IP不是内网IP,即防御了SSRF漏洞?

答案继续是否定的,上述函数并不能正确防御SSRF漏洞。为什么?

当我们请求的目标返回30X状态的时候,如果没有禁止跳转的设置,大部分HTTP库会自动跟进跳转。此时如果跳转的地址是内网地址,将会造成SSRF漏洞。

这个原因也很好理解,我以Python的requests库为例。requests的API中有个设置,叫allow_redirects,当将其设置为True的时候requests会自动进行30X跳转。而默认情况下(开发者未传入这个参数的情况下),requests会默认将其设置为True:

所以,我们可以试试请求一个302跳转的网址:

默认情况下,将会跟踪location指向的地址,所以返回的status code是最终访问的页面的状态码。而设置了allow_redirects的情况下,将会直接返回302状态码。

所以,即使我们获取了http://t.cn/R2iwH6d的Host,通过了is_inner_ipaddress检查,也会因为302跳转,跳到一个内网IP,导致SSRF。

这种情况下,我们有两种解决方法:

1. 设置allow_redirects=False,不允许目标进行跳转

2. 每跳转一次,就检查一次新的Host是否是内网IP,直到抵达最后的网址

第一种情况明显是会影响业务的,只是规避问题而未解决问题。当业务上需要目标URL能够跳转的情况下,只能使用第二种方法了。

所以,归纳一下,完美解决SSRF漏洞的过程如下:

1. 解析目标URL,获取其Host

2. 解析Host,获取Host指向的IP地址

3. 检查IP地址是否为内网IP

4. 请求URL

5. 如果有跳转,拿出跳转URL,执行1

0x04 使用requests库的hooks属性来检查SSRF

那么,上一章说的5个过程,具体用Python怎么实现?

我们可以写一个循环,循环条件就是“该次请求的状态码是否是30X”,如果是就继续执行循环,继续跟进location,如果不是,则退出循环。代码如下:

  1. r = requests.get(url, allow_redirects=False
  2. while r.is_redirect: 
  3.     url = r.headers['location']  
  4.     succ, errstr = check_ssrf(url)  
  5.     if not succ: 
  6.         raise Exception('SSRF Attack.')  
  7.     r = requests.get(url, allow_redirects=False

这个代码思路大概没有问题,但非常简陋,而且效率不高。

只要你翻翻requests的源代码,你会发现,它在处理30X跳转的时候考虑了很多地方:

  • 所有请求放在一个requests.Session()中
  • 跳转有个缓存,当下次跳转地址在缓存中的时候,就不用多次请求了
  • 跳转数量有最大限制,不可能无穷无尽跳下去
  • 解决307跳转出现的一些BUG等

如果说就按照之前简陋的代码编写程序,固然可以防御SSRF漏洞,但上述提高效率的方法均没用到。

那么,有更好的解决方法么?当然有,我们翻一下requests的源代码,可以看到一行特殊的代码:

hook的意思就是“劫持”,意思就是在hook的位置我可以插入我自己的代码。我们看看dispatch_hook函数做了什么:

  1. def dispatch_hook(key, hooks, hook_data, **kwargs): 
  2.      """Dispatches a hook dictionary on a given piece of data.""" 
  3.      hookshooks = hooks or dict() 
  4.      hookshooks = hooks.get(key)     
  5.      if hooks:     
  6.          if hasattr(hooks, '__call__'): 
  7.              hooks = [hooks]     
  8.          for hook in hooks:       
  9.              _hook_data = hook(hook_data, **kwargs)       
  10.              if _hook_data is not None:        
  11.                  hook_data = _hook_data 
  12.      return hook_data 

hooks是一个函数,或者一系列函数。这里做的工作就是遍历这些函数,并调用:

  1. _hook_data = hook(hook_data,**kwargs) 

我们翻翻文档,可以找到hooks event的说明 http://docs.python-requests.org/en/master/user/advanced/?highlight=hook#event-hooks :

文档中定义了一个print_url函数,将其作为一个hook函数。在请求的过程中,响应对象被传入了print_url函数,请求的域名被打印了下来。

我们可以考虑一下,我们将检查SSRF的过程也写为一个hook函数,然后传给requests.get,在之后的请求中一旦获取response就会调用我们的hook函数。这样,即使我设置allow_redirects=True,requests在每次请求后都会调用一次hook函数,在hook函数里我只需检查一下response.headers['location']即可。

说干就干,先写一个hook函数:

当r.is_redirect为True的时候,也就是说这次请求包含一个跳转。获取此时的r.headers['location'],并进行一些处理,最后传入check_ssrf。当检查不通过时,抛出一个异常。

然后编写一个请求函数safe_request_url,意思是“安全地请求一个URL”。使用这个函数请求的域名,将不会出现SSRF漏洞:

我们可以看到,在第一次请求url前,还是需要check_ssrf一次的。因为hook函数_request_check_location只是检查30X跳转时是否存在SSRF漏洞,而没有检查最初请求是否存在SSRF漏洞。

不过上面的代码还不算完善,因为_request_check_location覆盖了原有(用户可能定义的其他hooks)的hooks属性,所以需要简单调整一下。

最终,给出完整代码:

  1. import socket 
  2.  import re 
  3.  import requests 
  4.  from urllib.parse import urlparse 
  5.  from socket import inet_aton 
  6.  from struct import unpack 
  7.  from requests.utils import requote_uri 
  8.    
  9.  def check_ssrf(url): 
  10.      hostname = urlparse(url).hostname 
  11.        
  12.      def ip2long(ip_addr): 
  13.          return unpack("!L", inet_aton(ip_addr))[0] 
  14.        
  15.      def is_inner_ipaddress(ip):     
  16.          ip = ip2long(ip)     
  17.          return ip2long('127.0.0.0') >> 24 == ip >> 24 or \                 
  18.                 ip2long('10.0.0.0') >> 24 == ip >> 24 or \                 
  19.                 ip2long('172.16.0.0') >> 20 == ip >> 20 or \                 
  20.                 ip2long('192.168.0.0') >> 16 == ip >> 16     
  21.                   
  22.       try:         
  23.           if not re.match(r"^https?://.*/.*$", url):             
  24.               raise BaseException("url format error")         
  25.           ip_address = socket.getaddrinfo(hostname, 'http')[0][4][0] 
  26.           if is_inner_ipaddress(ip_address):             
  27.               raise BaseException("inner ip address attack")         
  28.           return True, "success"     
  29.             
  30.        except BaseException as e:         
  31.            return False, str(e)     
  32.        except:         
  33.            return False, "unknow error" 
  34.              
  35. def safe_request_url(url, **kwargs): 
  36.     def _request_check_location(r, *args, **kwargs):         
  37.         if not r.is_redirect:             
  38.             return         
  39.               
  40.         url = r.headers['location']         
  41.           
  42.         # The scheme should be lower case...         
  43.         parsed = urlparse(url)         
  44.         url = parsed.geturl()         
  45.           
  46.         # Facilitate relative 'location' headers, as allowed by RFC 7231.         
  47.         # (e.g. '/path/to/resource' instead of 'http://domain.tld/path/to/resource')         
  48.         # Compliant with RFC3986, we percent encode the url.         
  49.         if not parsed.netloc:             
  50.             url = urljoin(r.url, requote_uri(url))         
  51.         else:             
  52.             url = requote_uri(url)         
  53.               
  54.         succ, errstr = check_ssrf(url)         
  55.         if not succ:             
  56.             raise requests.exceptions.InvalidURL("SSRF Attack: %s" % (errstr, ))     
  57.           
  58.     success, errstr = check_ssrf(url)     
  59.     if not success:         
  60.         raise requests.exceptions.InvalidURL("SSRF Attack: %s" % (errstr,))     
  61.           
  62.     all_hooks = kwargs.get('hooks', dict())     
  63.     if 'response' in all_hooks:         
  64.         if hasattr(all_hooks['response'], '__call__'):             
  65.             r_hooks = [all_hooks['response']]         
  66.         else:             
  67.             r_hooks = all_hooks['response']         
  68.               
  69.         r_hooks.append(_request_check_location)     
  70.           
  71.     else: 
  72.         r_hooks = [_request_check_location]     
  73.           
  74.     all_hooks['response'] = r_hooks    
  75.     kwargs['hooks'] = all_hooks     
  76.     return requests.get(url, **kwargs) 

外部程序只要调用safe_request_url(url)即可安全地请求某个URL,该函数的参数与requests.get函数参数相同。

完美在Python Web开发中解决SSRF漏洞。其他语言的解决方案类似,大家可以自己去探索。

参考内容:

http://www.luteam.com/?p=211

http://docs.python-requests.org/

责任编辑:赵宁宁 来源: 安全客
相关推荐

2021-07-28 20:12:17

WindowsHeap内存

2021-02-19 09:19:11

消息队列场景

2022-07-04 10:51:27

数据中台数据仓库

2022-02-14 22:22:30

单元测试Junit5

2018-08-21 14:42:29

闪存存在问题

2021-03-15 22:42:25

NameNodeDataNode分布式

2014-07-17 10:11:53

Android LAPI谷歌

2020-10-29 08:38:07

Volodya漏洞恶意软件

2020-02-19 10:45:04

开发技能代码

2018-01-11 09:51:34

2017-11-21 14:32:05

容器持久存储

2015-03-27 15:07:55

云计算IaaS平台Docker

2016-07-08 13:33:12

云计算

2019-01-30 10:59:48

IPv6Happy EyebaIPv4

2021-11-23 09:45:26

架构系统技术

2021-05-11 08:48:23

React Hooks前端

2011-07-28 09:22:56

Oracle WDPOracle数据库

2015-07-02 11:12:19

2020-11-20 10:22:34

代码规范设计

2018-09-05 15:15:58

来电显示来电显示欺诈身份
点赞
收藏

51CTO技术栈公众号