一个适合小公司用的开源数据管道工具

大数据
airbnb是我很喜欢的公司,他们有很多开源的工具,airflow我觉得是最实用的代表。airflow 是能进行数据pipeline的管理,甚至是可以当做更高级的cron job 来使用。

最近在Prettyyes一直想建立起非常专业的data pipeline系统,然后没有很多时间,这几个礼拜正好app上线,有时间开始建立自己的 data pipeline,能够很好的做每天的数据导入,数据收集,以及数据分析。

什么是ETL

ETL 是常用的数据处理,在以前的公司里,ETL 差不多是数据处理的基础,要求非常稳定,容错率高,而且能够很好的监控。ETL的全称是 Extract,Transform,Load, 一般情况下是将乱七八糟的数据进行预处理,然后放到储存空间上。可以是SQL的也可以是NOSQL的,还可以直接存成file的模式。

一开始我的设计思路是,用几个cron job和celery来handle所有的处理,然后将我们的log文件存在hdfs,还有一些数据存在mysql,大概每天跑一次。核心是能够scale,稳定,容错,roll back。我们的data warehouse就放在云上,就简单处理了。

有了自己的ETL系统我觉得就很安心了,以后能够做数据处理和机器学习方面就相对方便一些。

问题来了

一开始我设计的思路和Uber一开始的ETL很像,因为我觉得很方便。但是我发觉一个很严重的问题,我一个人忙不过来。首先,要至少写个前端UI来监控cron job,但是市面上的都很差。其次,容错的autorestart写起来很费劲,可能是我自己没有找到一个好的处理方法。***部署的时候相当麻烦,如果要写好这些东西,我一个人的话要至少一个月的时间,可能还不是特别robust。在尝试写了2两天的一些碎片处理的脚本之后我发觉时间拖了实在太久了。

隆重推荐的工具

airbnb是我很喜欢的公司,他们有很多开源的工具,airflow我觉得是最实用的代表。airflow 是能进行数据pipeline的管理,甚至是可以当做更高级的cron job 来使用。现在一般的大厂都说自己的数据处理是ETL,美其名曰 data pipeline,可能跟google倡导的有关。airbnb的airflow是用python写的,它能进行工作流的调度,提供更可靠的流程,而且它还有自带的UI(可能是跟airbnb设计主导有关)。话不多说,先放两张截图:

 

 

 

什么是DAG

airflow里最重要的一个概念是DAG。

DAG是directed asyclic graph,在很多机器学习里有应用,也就是所谓的有向非循环。但是在airflow里你可以看做是一个小的工程,小的流程,因为每个小的工程里可以有很多“有向”的task,最终达到某种目的。在官网中的介绍里说dag的特点:

  • Scheduled: each job should run at a certain scheduled interval
  • Mission critical: if some of the jobs aren’t running, we are in trouble
  • Evolving: as the company and the data team matures, so does the data processing
  • Heterogenous: the stack for modern analytics is changing quickly, and most companies run multiple systems that need to be glued together
  • YEAH! It's awesome, right? After reading all of these, I found it's perfectly fit Prettyyes.

如何安装

安装airflow超级简单,使用pip就可以,现在airflow的版本是1.6.1,但是有个小的bug,这个之后会告诉大家如何修改。pip install airflow

这里有个坑,因为airflow涉及到很到数据处理的包,所以会安装pandas和numpy(这个Data Scientist应该都很熟悉)但是国内pip install 安装非常慢,用douban的源也有一些小的问题。我的解决方案是,直接先用豆瓣的源安装numpy 和 pandas,然后再安装airflow,自动化部署的时候可以在requirements.txt 里调整顺序就行了

如何运行

  1. pip install airflow 

摘自官方网站

  1. # airflow needs a home, ~/airflow is the default, 
  2. # but you can lay foundation somewhere else if you prefer 
  3. # (optional) 
  4. export AIRFLOW_HOME=~/airflow 
  5.  
  6. # install from pypi using pip 
  7. pip install airflow 
  8.  
  9. # initialize the database 
  10. airflow initdb 
  11.  
  12. # start the web server, default port is 8080 
  13. airflow webserver -p 8080 

然后你就可以上web ui查看所有的dags,来监控你的进程。

如何导入dag

一般***次运行之后,airflow会在默认文件夹下生成airflow文件夹,然后你只要在里面新建一个文件dag就可以了。我这边部署在阿里云上的文件tree大概是这个样子的。

以下是我自己写的我们公司prettyyes里需要每天处理log的其中一个小的dag:

  1. from airflow import DAG 
  2. from airflow.operators import BashOperator 
  3. from datetime import datetime, timedelta 
  4. import ConfigParser 
  5.  
  6.  
  7. config = ConfigParser.ConfigParser() 
  8. config.read('/etc/conf.ini'
  9. WORK_DIR = config.get('dir_conf''work_dir'
  10. OUTPUT_DIR = config.get('dir_conf''log_output'
  11. PYTHON_ENV = config.get('dir_conf''python_env'
  12.  
  13. default_args = { 
  14.     'owner''airflow'
  15.     'depends_on_past': False, 
  16.     'start_date': datetime.today() - timedelta(days=1), 
  17.     'retries': 2, 
  18.     'retry_delay': timedelta(minutes=15), 
  19.  
  20. dag = DAG('daily_process', default_args=default_args, schedule_interval=timedelta(days=1)) 
  21.  
  22. templated_command = "echo 'single' | {python_env}/python {work_dir}/mr/LogMR.py"
  23.     .format(python_env=PYTHON_ENV, work_dir=WORK_DIR) + " --start_date {{ ds }}" 
  24.  
  25.  
  26. task = BashOperator( 
  27.     task_id='process_log'
  28.     bash_command=templated_command, 
  29.     dag=dag 

写好之后,只要将这个dag放入之前建立好的dag文件夹,然后运行:

  1. python <dag_file> 

来确保没有语法错误。在测试里你可以看到我的

  1. schedule_interval=timedelta(days=1) 

这样我们的数据处理的任务就相当于每天跑一次。更重要的是,airflow还提供处理bash处理的接口外还有hadoop的很多接口。可以为以后连接hadoop系统提供便利。很多具体的功能可以看官方文档。

其中的一个小的bug

airflow 1.6.1有一个网站的小的bug,安装成功后,点击dag里的log会出现以下页面:

这个只要将

  1. airflow/www/utils.py  

文件替换成***的airflow github上的utils.py文件就行,具体的问题在这个:

fixes datetime issue when persisting logs

使用supervisord进行deamon

airflow本身没有deamon模式,所以直接用supervisord就ok了,我们只要写4行代码。

  1. [program:airflow_web] 
  2. command=/home/kimi/env/athena/bin/airflow webserver -p 8080 
  3.  
  4. [program:airflow_scheduler] 
  5. command=/home/kimi/env/athena/bin/airflow scheduler 

我觉得airflow特别适合小的团队,他的功能强大,而且真的部署方便。和hadoop,mrjob又可以无缝连接,对我们的业务有很大的提升。

 

责任编辑:Ophira 来源: segmentfault
相关推荐

2014-08-18 09:59:04

2012-04-10 15:09:21

云计算

2018-01-29 11:22:05

大数据SaaS数据

2014-05-15 16:38:02

职业创业

2011-08-22 10:20:17

研发

2019-02-18 09:12:36

数据科学家数据科学数据

2015-06-02 10:18:53

2010-06-30 09:36:43

思科统一计算

2019-07-22 09:02:49

工作公司开发

2012-05-28 14:20:32

Linux集群

2013-12-23 15:11:34

创业客户

2016-11-14 19:39:15

微软办公

2010-03-09 11:24:54

2019-04-01 08:40:51

Offer面试互联网

2018-06-14 09:59:48

程序员代码大公司

2013-03-04 10:07:43

MWC2013移动互联网

2011-04-13 09:46:35

应用开发移动应用

2011-04-28 14:45:53

用户体验一体机

2016-01-13 13:13:29

运维监控工具

2016-10-19 16:33:29

点赞
收藏

51CTO技术栈公众号