蹩脚数据科学家的10种现象

大数据
对数据科学的热情以及掌握一定的技能,这是成功的关键。如果你只是假装有兴趣,或者并不具备重要的技能,总有一天,你会原形毕露。

优秀的数学家可以成为***的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据。

如果他们的所有经验都来自学术机构,当他们面对现实问题时,可能会束手无策。寻找有实践经验的人,不要在这方面妥协。

对数据科学的热情以及掌握一定的技能,这是成功的关键。如果你只是假装有兴趣,或者并不具备重要的技能,总有一天,你会原形毕露。

[[166196]]

如今,数据科学家已是炙手可热,那些曾经对其毫无所知的企业,眼下也开始在全世界搜寻***的数据科学家。问题在于,优秀数据科学家的标准是什么?和其他东西一样,数据科学家也是良莠不齐,招聘他们是一项重要的投资,如果选了个“次品”,你会付出沉重的代价。凭借一批出色的数据科学家,Facebook为自己的社交媒体平台注入了富有创造力的新功能,令用户为之兴奋。

过去10年里,数据呈现爆炸式增长。大数据扑面而来,普通人很难弄懂它的含意,更别提加以利用了。但数据科学家能从中提取出有价值的信息。对一家公司来说,数据科学家的雇用成本很高,由于这方面的人才供不应求,他们的薪水会迅速上涨。

在当今这个时代,解雇员工同样代价不菲,错误的招聘会使你的公司倒退几个月。所以,在寻找优秀的数据科学家时,你也应该警惕蹩脚数据科学家的迹象。如果发现以下10个迹象中的任何一个,你都应该迅速远离。

1. 糟糕的数学背景

许多计算机专家和程序员都会把自己说成是数据科学家,但实际上,真正出色的数据科学家通常拥有数学背景。优秀的数学家可以成为***的数据科学家,但数学不好的程序员不行。蹩脚的数学家无法有效地分析数据,而这恰恰是数据科学家的首要任务。

2. 计算机知识贫乏

没错,优秀的数学家可以成为***的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据,要熟悉Spark和其他系统。如果你的数据科学家坚持要求配一名助手,因为他用不来电脑,那么你应该继续寻找,去雇用其他人。

3. 没有全能型人才

一个人集统计学家、开发员、数学家和其他身份于一身,并不意味着他能成为一名数据科学家。几乎可以肯定的是,他拥有跨领域知识,能够根据不同的职位需求来推销自己。他也许什么都会,但可能什么都不精。

4. 纯粹的学术派

你需要有实践经验的人。如果他们的所有经验都来自学术机构,当他们面对现实问题时,可能会束手无策。寻找有实践经验的人,不要在这方面妥协。

5. 缺乏团队精神

数据科学家将和其他人共事,所以你不会想要一个不合群的人,即便他再怎么聪颖过人。数据科学家应该真正地融入团队,了解整体情况,做出全面改进。而如果他们不能和其他人融洽相处,就做不到这一点。

6. 缺乏商业知识

数据科学家不能只会运用理论。他们还要重视经过验证的技巧,运用可靠的传统方法。这些都来自于实践经验。

数据科学家需要参加商务会议,通过演示向高级管理层阐述分析结果。因此,在雇用一名数据科学家之前,要确保他拥有一定的商业知识,这一点非常重要。

7. 不熟悉工具

你面前的那个人拥有丰富的技术知识,但他们能否运用这些知识?如果他们没有实际运用过SAS、R、Scala、Python或其他计算机语言,他们可能只会像一个“绣花枕头”,中看不中用。

他们必须能够利用工具来阐释和转化信息流。

8. SAS成瘾者

有些SAS开发人员会把自己包装成数据科学家,但他们不是。数据科学家应该掌握多项技能,对于某个具体的问题,他们可以运用多种不同的系统。而蹩脚的数据科学家在遇到任何问题时,都只会采用同一种技能,他们希望用一种语言就能解决所有问题,这是不切实际的。

9. 没有理科学位

这是个不好的迹象,因为数据科学属于理科范畴。你也可能自学成才,但如果有人能秉持科学原则,并且掌握了分析学的一般性应用,还毕业于名牌大学,此人更有可能给企业带来价值。***能拥有硕士学位。如果在其他领域还拥有一技之长,此人将是一只潜力股。

10. 不会用通俗语言来解释

数据科学家应该能用通俗易懂的日常用语来解释最复杂的问题,不能与现实世界脱节,这会导致你的解决方案无法被人理解,而且你需要花费一定的时间和精力来克服语言障碍。

虽然有很多重要的数据科学技能可以后天习得,但有些却是天生的。那些妨碍你进入数据科学领域的因素常常无法改变或纠正。对数据科学的热情以及掌握一定的技能,这是成功的关键。如果你只是假装有兴趣,或者并不具备重要的技能,总有一天,你会原形毕露。

责任编辑:Ophira 来源: 199IT
相关推荐

2017-01-23 16:00:25

数据科学家大数据数学家

2016-09-22 14:28:33

数据科学家算法

2018-03-27 11:02:55

2017-08-04 15:53:10

大数据真伪数据科学家

2016-12-06 08:47:18

数据算法

2019-11-29 18:03:27

数学R语言算法

2012-12-26 10:51:20

数据科学家

2018-02-28 15:03:03

数据科学家数据分析职业

2018-12-24 08:37:44

数据科学家数据模型

2012-12-06 15:36:55

CIO

2019-12-11 19:19:19

算法数据科学家代码

2019-06-05 15:17:45

2019-07-30 12:05:20

数据科学采样算法

2020-03-20 14:40:48

数据科学Python学习

2015-08-25 13:20:29

数据科学

2016-04-11 14:15:06

数据科学数据挖掘工具

2017-11-21 14:42:30

数据科学统计学习机器学习

2018-10-16 14:37:34

数据科学家数据分析数据科学

2012-06-12 09:33:59

2020-09-04 16:17:15

数据科学离群点检测
点赞
收藏

51CTO技术栈公众号