深度学习和拓扑数据分析的六大惊人之举

大数据
假如你有一个一千列和一百万行的数据集。无论你从哪个角度看它——小型,中型或大型的数据——你不可能看到它的全貌。将它放大或缩小。使它能够在一个屏幕里显示完全。由于人的本质,如果能够看到事物的全局的话,我们就会有更好的理解。有没有办法把数据都放到一张图里,让你可以像观察地图一样观察数据呢?

假如你有一个一千列和一百万行的数据集。无论你从哪个角度看它——小型,中型或大型的数据——你不可能看到它的全貌。将它放大或缩小。使它能够在一个屏幕里显示完全。由于人的本质,如果能够看到事物的全局的话,我们就会有更好的理解。有没有办法把数据都放到一张图里,让你可以像观察地图一样观察数据呢?

将深度学习与拓扑数据分析结合在一起完全能够达到此目的,并且还绰绰有余。

1、它能在几分钟内创建一张数据图,其中每一个点都是一个数据项或一组类似的数据项。

基于数据项的相关性和学习模式,系统将类似的数据项组合在一起。这将使数据有唯一的表示方式,并且会让你更清晰地洞察数据。可视化图中的节点由一个或多个数据点构成,而点与点之间的链接则代表数据项之间高相似性。

深度学习

2、它展示了数据中的模式,这是使用传统商业智能无法识别的。

下面是个案例,展示的是算法是如何仅仅通过分析用户行为来识别两组不同的人群。典型的特征区分,黄色和蓝色点:女性和男性。

深度学习

如果我们分析行为类型,我们会发现,其中一组大部分是发送信息(男性),而另一组则多为接收信息(女性)。

深度学习

3、它能在多层面上识别分段数据

分段数据表现在多种层面上——从高层次分类到具有相同数据项的分组。

在一个Netflix数据集的例子中,每个数据项是一部电影。最高层次的一组是音乐,孩子,外交和成人电影。中层次的部分包含不同分段:从印度片和港片到惊悚片和恐怖片。在低层次中是电视连续剧分组,比如“万能管家”,“办公室”,“神秘博士”等。

深度学习

4、它能分析任何数据:文本,图像,传感器数据,甚至音频数据。

任何数据都可以被分段并理解,如果可以将它展现为数字矩阵,其中每一行是一个数据项,列是一个参数。下面这些是最常见的用例:

深度学习

5、如果你引导它,它能学习更复杂的依赖关系。

选择一组数据项,将它们分组,算法就会发现所有相关或类似的数据项。重复这个过程数次,那么神经网络可以学习到它们之间的差异,比如Mac硬件,PC硬件和一般电子文本的差异。

对20000篇属于20个不同主题的文章进行了初步分析,得出一个密集的点云图(左图)。在使用深度学习迭代几次之后,算法会将它们进行分类,错误率仅仅1.2%(右图)。

深度学习

6、即使没有监督它也能够学习

深度学习和自编码器模拟了人类大脑活动,并且能够在数据集中自动识别高层次的模式。例如,在谷歌大脑计划中,自编码器通过“观看”一千万条YouTube视频截取的数字图像,成功地学习并识别出人和猫脸:

深度学习

我最近在使用拓扑数据分析和深度学习,并开发出一套工具,它将这些技术转换成了一个用户友好型界面,能够让人们观察数据并发现潜在联系。

 

 

责任编辑:李英杰 来源: 36大数据
相关推荐

2019-10-23 19:27:38

数据分析模型分析

2021-08-11 14:48:32

数据分析大数据算法

2018-02-06 09:25:35

数据分析分析方法分析工具

2022-02-25 20:44:28

框架深度学习架构

2013-11-22 16:06:00

微软Windows

2011-03-23 14:25:54

2024-10-09 17:22:20

Python

2023-10-30 15:55:16

自动化人工智能

2016-11-08 18:00:44

机器学习

2018-04-10 12:51:09

2018-07-03 09:00:00

Redis内存分析工具

2024-10-22 14:42:14

2010-05-18 15:54:25

IIS 7.0

2017-07-27 14:18:41

大数据挑战动向

2016-08-29 18:56:48

数据安全策略

2022-07-25 15:10:31

数据治理管理IT

2012-02-27 10:06:12

数据中心通风系统

2017-11-07 08:54:06

云存储技术系统

2013-09-05 11:11:48

谷歌微软

2020-06-04 07:00:00

机器学习人工智能Python
点赞
收藏

51CTO技术栈公众号