关于并发服务器中的I/O复用实现方式,前面我们讲过select的方式,但select的性能比较低,并不适合以Web服务器端开发为主流的现代开发环境。因此就有了Linux下的epoll,BSD的kqueue,Solaris的/dev/poll和Windows的IOCP等复用技术。本章就来讲讲Linux下的epoll技术。
epoll理解及应用
基于select的I/O复用技术速度慢的原因:
1,调用select函数后常见的针对所有文件描述符的循环语句。它每次事件发生需要遍历所有文件描述符,找出发生变化的文件描述符。(以前写的示例没加循环)
2,每次调用select函数时都需要向该函数传递监视对象信息。即每次调用select函数时向操作系统传递监视对象信息,至于为什么要传?是因为我们监视的套接字变化的函数,而套接字是操作系统管理的。(这个才是最耗效率的)
注释:基于这样的原因并不是说select就没用了,在这样的情况下就适合选用select:1,服务端接入者少 2,程序应具有兼容性。
epoll是怎么优化select问题的:
1,每次发生事件它不需要循环遍历所有文件描述符,它把发生变化的文件描述符单独集中到了一起。
2,仅向操作系统传递1次监视对象信息,监视范围或内容发生变化时只通知发生变化的事项。
实现epoll时必要的函数和结构体
函数:
epoll_create:创建保存epoll文件描述符的空间,该函数也会返回文件描述符,所以终止时,也要调用close函数。(创建内存空间)
epoll_ctl:向空间注册,添加或修改文件描述符。(注册监听事件)
epoll_wait:与select函数类似,等待文件描述符发生变化。(监听事件回调)
结构体:
struct epoll_event
{
__uint32_t events;
epoll_data_t data;
}
typedef union epoll_data
{
void *ptr;
int fd;
__uinit32_t u32;
__uint64_t u64;
} epoll_data_t;
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
基于epoll的回声服务器端
//
// main.cpp
// hello_server
//
// Created by app05 on 15-10-19.
// Copyright (c) 2015年 app05. All rights reserved.
//
#include
#include
#include
#include
#include
#include
#include
#define BUF_SIZE 100
#define EPOLL_SIZE 50
void error_handling(char *buf);
int main(int argc, const char * argv[]) {
int serv_sock, clnt_sock;
struct sockaddr_in serv_adr, clnt_adr;
socklen_t adr_sz;
int str_len, i;
char buf[BUF_SIZE];
//类似select的fd_set变量查看监视对象的状态变化,epoll_event结构体将发生变化的文件描述符单独集中到一起
struct epoll_event *ep_events;
struct epoll_event event;
int epfd, event_cnt;
if(argc != 2)
{
printf("Usage: %s \n", argv[0]);
exit(1);
}
serv_sock = socket(PF_INET, SOCK_STREAM, 0);
if(serv_sock == -1)
error_handling("socket() error");
memset(&serv_adr, 0, sizeof(serv_adr));
serv_adr.sin_family = AF_INET;
serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_adr.sin_port = htons(atoi(argv[1]));
if(bind(serv_sock, (struct sockaddr *) &serv_adr, sizeof(serv_adr)) == -1)
error_handling("bind() error");
if(listen(serv_sock, 5) == -1)
error_handling("listen() error");
//创建文件描述符的保存空间称为“epoll例程”
epfd = epoll_create(EPOLL_SIZE);
ep_events = malloc(sizeof(struct epoll_event) *EPOLL_SIZE);
//添加读取事件的监视(注册事件)
event.events = EPOLLIN; //读取数据事件
event.data.fd = serv_sock;
epoll_ctl(epdf, EPOLL_CTL_ADD, serv_sock, &event);
while (1)
{
//响应事件,返回发生事件的文件描述符数
event_cnt = epoll_wait(epfd, ep_events, EPOLL_SIZE, -1); //传-1时,一直等待直到事件发生
if(event_cnt == -1)
{
puts("epoll_wait() error");
break;
}
//服务端套接字和客服端套接字
for (i = 0; i < event_cnt; i++) {
if(ep_events[i].data.fd == serv_sock)//服务端与客服端建立连接
{
adr_sz = sizeof(clnt_adr);
clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &adr_sz);
event.events = EPOLLIN;
event.data.fd = clnt_sock;
epoll_ctl(epfd, EPOLL_CTL_ADD, clnt_sock, &event);
printf("connected client: %d \n", clnt_sock);
}
else //连接之后传递数据
{
str_len = read(ep_events[i].data.fd, buf, BUF_SIZE);
if(str_len == 0)
{
//删除事件
epoll_ctl(epfd, EPOLL_CTL_DEL, ep_events[i].data.fd, NULL);
close(ep_events[i].data.fd);
printf("closed client: %d \n", ep_events[i].data.fd);
}
else
{
write(ep_events[i].data.fd, buf, str_len);
}
}
}
}
close(serv_sock);
close(epfd);
return 0;
}
void error_handling(char *message)
{
fputs(message, stderr);
fputc('\n', stderr);
exit(1);
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
- 148.
- 149.
- 150.
- 151.
- 152.
- 153.
- 154.
- 155.
- 156.
- 157.
- 158.
- 159.
- 160.
- 161.
- 162.
- 163.
- 164.
- 165.
- 166.
- 167.
- 168.
- 169.
- 170.
- 171.
- 172.
- 173.
- 174.
- 175.
- 176.
- 177.
- 178.
- 179.
- 180.
- 181.
- 182.
- 183.
- 184.
- 185.
- 186.
- 187.
- 188.
- 189.
- 190.
- 191.
- 192.
- 193.
条件触发和边缘触发
什么是条件触发和边缘触发?它们是指事件响应的方式,epoll默认是条件触发的方式。条件触发是指:只要输入缓冲中有数据就会一直通知该事件,循环响应epoll_wait。而边缘触发是指:输入缓冲收到数据时仅注册1次该事件,即使输入缓冲中还留有数据,也不会再进行注册,只响应一次。
边缘触发相对条件触发的优点:可以分离接收数据和处理数据的时间点,从实现模型的角度看,边缘触发更有可能带来高性能。
将上面epoll实例改为边缘触发:
1,首先改写 event.events = EPOLLIN | EPOLLET; (EPOLLIN:读取数据事件 EPOLLET:边缘触发方式)
2,边缘触发只响应一次接收数据事件,所以要一次性全部读取输入缓冲中的数据,那么就需要判断什么时候数据读取完了?Linux声明了一个全局的变量:int errno; (error.h中),它能记录发生错误时提供额外的信息。这里就可以用它来判断是否读取完数据:
str_len = read(...);
if(str_len < 0)
{
if(errno == EAGAIN) //读取输入缓冲中的全部数据的标志
break;
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
3,边缘触发方式下,以阻塞方式工作的read&write有可能会引起服务端的长时间停顿。所以边缘触发一定要采用非阻塞的套接字数据传输形式。那么怎么将套接字的read,write数据传输形式修改为非阻塞模式呢?
//fd套接字文件描述符,将此套接字数据传输模式修改为非阻塞
void setnonblockingmode(int fd)
{
int flag = fcntl(fd, F_GETFL,0); //得到套接字原来属性
fcntl(fd, F_SETFL, flag | O_NONBLOCK);//在原有属性基础上设置添加非阻塞模式
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.