大数据时代的创业趋势

大数据
面对信息化潮流,只有积极抢占制高点,才能赢得发展先机。

面对信息化潮流,只有积极抢占制高点,才能赢得发展先机。世界正迈入大数据时代,随着互联网技术的不断发展,大数据成为一种重要资源,有利于推动创业创新。在此背景下,中央提出将“大众创业、万众创新”作为新常态下我国经济发展的一个重要引擎,是恰逢其时的时代号角。

[[148987]]

(一)

大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。大数据之所以对于创业具有不同寻常的意义或价值,是因为大数据拥有以下特征:

一是大数据分析模式可激发创造力。传统研究方法是先提出假设,然后收集和分析数据来验证这种假设,即用一系列的因果关系来验证各种猜想。大数据时代探索世界的方法,不再始于假设,而是始于数据,根据数据发现以前不曾发现的联系。这种大数据分析模式不受限于传统的思维模式,因而能为人们提供更广阔的视野以及更新的角度。

二是大数据分析技术能预测和满足个性化需求。大数据的核心是预测,预测建立在对海量结构性和非结构性数据进行相关性分析的基础上。大数据技术可以对人的需求进行分析预测,有了个性化数据作为支撑,大数据服务将变得更为精准有效,每个人都可以通过大数据实现个人的喜好。电子商务推荐我们想要的商品,搜索引擎提供个性化排序,教育机构根据个人需求有针对性地提供教育培训,金融机构帮助用户进行有效的理财管理或提供贷款服务,企业通过技术支持实时获得客户的在线记录,并及时为他们提供定制化服务。以前创业者可能在生产产品后再寻找潜在消费人群,而在大数据时代,创业者可能基于需求倒推到产品生产环节。

三是云计算可使数据存储和数据分析成为一种公共服务。云计算将数据存储和数据分析转变为一种服务,这是一个重大的变革。云服务包括基础架构、平台和软件等3个层次。服务器、数据和软件都将保存在私营公司的平台上,创业者可以在平台上开发、部署、运行自己的应用程序,服务的收费取决于存储量、计算量、访问量等指标。借助“云”可实现公共资源的“按需配置”,不仅可节约资金,还可提高公共服务的质量。

(二)

大数据时代的创业趋势有如下几个特征:

其一,大数据服务走向订阅式定价模式,创业服务更个性,创业人群更普遍。订阅式定价模式是未来大数据服务的方向。这种模式使创业服务更个性化,从而扩大创业人群。目前,国内已形成平台型企业孵化器、创业咖啡、创业媒体、创业社区等孵化形态,共同构成市场化、专业化、集成化、网络化的“众创空间”。

其二,开放数据和开源技术使创业门槛降低,创业机会大大增加。大数据时代,人们寻找创业机遇,最重要的是数据收集和分析能力,从数据中找到好点子。首先,大数据技术在萌芽阶段就是开源技术,这会给基础架构硬件、应用程序开发工具、应用、服务等各个方面的相关领域带来更多的机会。其次,创业者不需要是统计学家、工程师或者数据分析师也可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。此外,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。

其三,大数据技术本身的发展,带来全新的创业方向。大数据时代,创新带动创业发展。大数据相关技术的发展,将会创造出一些新的细分市场。比如,数据技术产业,包括硬件方面的智能管道、物联网、服务器、存储、传输、智能移动设备等,软件方面的语言、数据平台、工具、结构与非结构数据库、应用软件等,服务方面的IDC、云计算、WEB应用等;数据采集业,包括定位、支付、SNS、邮件等行业;数据加工业,包括数据挖掘、数据分析、数据咨询等产业。这些都为创业者们提供了新的机遇。

(三)

当前,大数据时代下的创业热潮,需要政府大力支持,打破一切体制机制的障碍,让每个有创业愿望的人都拥有自主创业的空间,让创新创造的血液在全社会自由流动。

***,建设数据开放型政府。坚持深化改革,营造创业环境。建立国家政府数据统一开放平台,建立政府部门和事业单位等公共机构数据资源清单,制定实施政府数据开放共享标准,对各公共部门完成开放数据任务情况进行审计,以促进公共服务数据的开放性,建设一个数据开放型的政府。

第二,形成数据开放与共享的机制。坚持开放共享,推动模式创新。依托“互联网+”等新技术构建最广泛的创业平台,鼓励发展众创、众包、众扶、众筹等,使创业资源配置更灵活、更精准,凝聚大众智慧,形成内脑与外脑结合、企业与个人协同的创业新格局。推动科学家和企业之间共享数据的制度建设;建立信息共享的通用标准,使其广泛可用;鼓励更多的专家研究、管理和使用数据。

第三,建立数据治理制度。开放、流通的数据是释放大数据价值的基本要求,以大数据推动创业需要完善的数据治理制度。首先,宏观上的顶层设计要解决“数据割据”问题,微观上的管理要注重“数据质量”,包括数据的正确性、完整性和一致性。其次,制定统一的政府开放数据标准,明确数据开放的范围、方式、内容、细化程度及数据格式。此外,还要建立相应的法律法规,界定数据资产的归属和使用,以解决挖掘数据商业价值与侵犯个人隐私之间的矛盾。

责任编辑:李英杰 来源: 经济日报
相关推荐

2016-11-07 20:25:58

2013-06-28 09:40:42

大数据

2015-10-10 10:03:29

大数据时代蓝海

2018-03-15 09:53:48

大数据机器学习云服务

2013-06-13 09:42:11

大数据

2021-10-29 22:45:47

大数据算法技术

2017-06-09 05:55:56

存储机器学习人工智能

2015-12-14 17:52:06

ENI经济和信息化网

2015-11-25 17:22:03

CIO时代网

2013-09-17 18:24:46

SAP

2013-12-02 10:02:30

大数据时代

2021-09-30 16:28:34

大数据数据管理企业

2017-01-03 10:23:18

大数据隐私保护

2013-08-29 11:24:31

大数据

2013-06-21 10:16:44

2013-06-06 10:32:48

大数据

2013-07-05 09:07:54

小时代大数据大数据时代

2017-02-23 09:30:29

大数据隐私数字化

2018-05-30 11:53:27

大数据数据分析数据

2020-10-22 09:48:46

大数据磁带技术
点赞
收藏

51CTO技术栈公众号