大数据分析到底需要多少种工具?

大数据
JMLR杂志上最近有一篇论文,作者比较了179种不同的分类学习方法(分类学习算法)在121个数据集上的性能,发现Random Forest(随机森林)和SVM(支持向量机)分类准确率最高,在大多数情况下超过其他方法。本文针对“大数据分析到底需要多少种工具?

JMLR杂志上最近有一篇论文,作者比较了179种不同的分类学习方法(分类学习算法)在121个数据集上的性能,发现Random Forest(随机森林)和SVM(支持向量机)分类准确率***,在大多数情况下超过其他方法。本文针对“大数据分析到底需要多少种工具?”这一问题展开讨论,总结机器学习领域多年来积累的经验规律,继而导出大数据分析应该采取的策略。

1.分类方法大比武

大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。 

图1  机器学习分类体系

最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习***期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列***、第二名,但两者差异不大。在84.3%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。

2.几点经验总结

大数据分析到底需要多少种机器学习的方法呢?围绕着这个问题,我们看一下机器学习领域多年得出的一些经验规律。

l  大数据分析性能的好坏,也就是说机器学习预测的准确率,与使用的学习算法、问题的性质、数据集的特性包括数据规模、数据特征等都有关系。

l  一般地,Ensemble方法包括Random Forest和AdaBoost、SVM、Logistic Regression 分类准确率***。

l  没有一种方法可以“包打天下”。Random Forest、SVM等方法一般性能***,但不是在什么条件下性能都***。

l  不同的方法,当数据规模小的时候,性能往往有较大差异,但当数据规模增大时,性能都会逐渐提升且差异逐渐减小。也就是说,在大数据条件下,什么方法都能work的不错。参见图2中Blaco & Brill的实验结果。

l  对于简单问题,Random Forest、SVM等方法基本可行,但是对于复杂问题,比如语音识别、图像识别,最近流行的深度学习方法往往效果更好。深度学习本质是复杂模型学习,是今后研究的重点。

l  在实际应用中,要提高分类的准确率,选择特征比选择算法更重要。好的特征会带来更好的分类结果,而好的特征的提取需要对问题的深入理解。

[[139488]]

图2  不同机器学习方法在数据集增大时的学习曲线。

3.应采取的大数据分析策略

建立大数据分析平台时,选择实现若干种有代表性的方法即可。当然,不仅要考虑预测的准确率,还有考虑学习效率、开发成本、模型可读性等其他因素。大数据分析平台固然重要,同时需要有一批能够深入理解应用问题,自如使用分析工具的工程师和分析人员。

只有善工利器,大数据分析才能真正发挥威力。

参考文献

[1]  Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim; Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research 15(Oct):3133−3181, 2014.

[2]  Banko, Michele, and Eric Brill. "Scaling to very very large corpora for natural language disambiguation." Proceedings of the 39th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2001.

 
责任编辑:王雪燕
相关推荐

2015-08-21 13:54:38

大数据

2021-11-11 11:27:55

大数据分析系统

2021-06-07 11:42:41

数据分析业务

2013-11-12 09:27:01

大数据科学家大数据

2015-09-08 09:24:26

大数据分析采购

2023-04-28 12:15:57

数据分析师业务

2021-03-15 10:43:20

大数据数据分析工具

2020-09-17 20:36:46

大数据架构技术

2015-08-14 10:28:09

大数据

2017-12-13 10:04:05

2019-08-22 09:08:53

大数据HadoopStorm

2020-05-26 16:25:33

Hadoop下载安装

2019-05-06 09:27:13

数据分析大数据开发数据

2021-08-05 23:24:44

大数据数据分析技能

2015-08-11 15:52:52

大数据数据分析

2019-01-29 15:43:28

数据分析数据挖掘分析方法

2017-09-21 13:04:35

数据挖掘分析分析方法数据分析师

2012-12-04 12:12:37

大数据工具大数据云设备大数据分析

2022-03-29 14:49:14

大数据数据分析

2021-10-12 15:25:08

大数据数据分析
点赞
收藏

51CTO技术栈公众号