【博文推荐】运维角度浅谈MySQL数据库优化

数据库 MySQL
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。数据库发展周期大致分为以下五个阶段。

  本文出自51CTO博客博主“企鹅”那点事儿,如有任何问题请进入博主页面互动讨论。

博文地址:http://lizhenliang.blog.51cto.com/7876557/1657465

一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。数据库发展周期大致分为以下五个阶段:

1、数据库表设计

项目立项后,开发部根据产品部需求开发项目,开发工程师工作其中一部分就是对表结构设计。对于数据库来说,这点很重要,如果设计不当,会直接影响访问速度和用户体验。影响的因素很多,比如慢查询、低效的查询语句、没有适当建立索引、数据库堵塞(死锁)等。当然,有测试工程师的团队,会做压力测试,找bug。对于没有测试工程师的团队来说,大多数开发工程师初期不会太多考虑数据库设计是否合理,而是尽快完成功能实现和交付,等项目有一定访问量后,隐藏的问题就会暴露,这时再去修改就不是这么容易的事了。

2、数据库部署

该运维工程师出场了,项目初期访问量不会很大,所以单台部署足以应对在1500左右的QPS(每秒查询率)。考虑到高可用性,可采用MySQL主从复制+Keepalived做双击热备,常见集群软件有Keepalived、Heartbeat。

双机热备博文:http://lizhenliang.blog.51cto.com/7876557/1362313

3、数据库性能优化

如果将MySQL部署到普通的X86服务器上,在不经过任何优化情况下,MySQL理论值正常可以处理1500左右并发连接数(QPS),经过优化后,有可能会提升到2000左右QPS,否则,访问量当达到1000多并发连接时,数据库处理性能就会变慢,而且硬件资源还很富裕,这时就该考虑软件问题了。那么怎样让数据库***化发挥性能呢?一方面可以单台运行多个MySQL实例让服务器性能发挥到***化,另一方面是对数据库进行优化,往往操作系统和数据库默认配置都比较保守,会对数据库发挥有一定限制,可对这些配置进行适当的调整,尽可能的处理更多连接数。

具体优化有以下三个层面:

3.1 数据库配置优化

MySQL常用有两种存储引擎,一个是MyISAM,不支持事务处理,读性能处理快,表级别锁。另一个是InnoDB,支持事务处理(ACID),设计目标是为处理大容量数据发挥***化性能,行级别锁。

表锁:开销小,锁定粒度大,发生死锁概率高,相对并发也低。

行锁:开销大,锁定粒度小,发生死锁概率低,相对并发也高。

为什么会出现表锁和行锁呢?主要是为了保证数据的完整性,举个例子,一个用户在操作一张表,其他用户也想操作这张表,那么就要等***个用户操作完,其他用户才能操作,表锁和行锁就是这个作用。否则多个用户同时操作一张表,肯定会数据产生冲突或者异常。

根据以上看来,使用InnoDB存储引擎是***的选择,也是MySQL5.5以后版本中默认存储引擎。每个存储引擎相关联参数比较多,以下列出主要影响数据库性能的参数。

公共参数默认值:

 

  1. max_connections = 151 
  2. #同时处理***连接数,推荐设置***连接数是上限连接数的80%左右    
  3. sort_buffer_size = 2M 
  4. #查询排序时缓冲区大小,只对order bygroup by起作用,可增大此值为16M 
  5. query_cache_limit = 1M   
  6. #查询缓存限制,只有1M以下查询结果才会被缓存,以免结果数据较大把缓存池覆盖 
  7. query_cache_size = 16M   
  8. #查看缓冲区大小,用于缓存SELECT查询结果,下一次有同样SELECT查询将直接从缓存池返回结果,可适当成倍增加此值 
  9. open_files_limit = 1024  
  10. #打开文件数限制,如果show global status like 'open_files'查看的值等于或者大于open_files_limit值时,程序会无法连接数据库或卡死 

 

MyISAM参数默认值:

 

  1. key_buffer_size = 16M#索引缓存区大小,一般设置物理内存的30-40% 
  2. read_buffer_size = 128K  #读操作缓冲区大小,推荐设置16M或32M 

 

InnoDB参数默认值:

 

  1. innodb_buffer_pool_size = 128M 
  2. #索引和数据缓冲区大小,一般设置物理内存的60%-70% 
  3. innodb_buffer_pool_instances = 1     
  4. #缓冲池实例个数,推荐设置4个或8个 
  5. innodb_flush_log_at_trx_commit = 1   
  6. #关键参数,0代表大约每秒写入到日志并同步到磁盘,数据库故障会丢失1秒左右事务数据。1为每执行一条SQL后写入到日志并同步到磁盘,I/O开销大,执行完SQL要等待日志读写,效率低。2代表只把日志写入到系统缓存区,再每秒同步到磁盘,效率很高,如果服务器故障,才会丢失事务数据。对数据安全性要求不是很高的推荐设置2,性能高,修改后效果明显。 
  7. innodb_file_per_table = OFF   
  8. #默认是共享表空间,共享表空间idbdata文件不断增大,影响一定的I/O性能。推荐开启独立表空间模式,每个表的索引和数据都存在自己独立的表空间中,可以实现单表在不同数据库中移动。 
  9. innodb_log_buffer_size = 8M   
  10. #日志缓冲区大小,由于日志最长每秒钟刷新一次,所以一般不用超过16M 

 

3.2 系统配置优化

大多数MySQL都部署在linux系统上,所以操作系统的一些参数也会影响到MySQL性能,以下对linux内核进行适当优化。

 

  1. net.ipv4.tcp_fin_timeout = 30 
  2. #TIME_WAIT超时时间,默认是60s 
  3. net.ipv4.tcp_tw_reuse = 1     
  4. #1表示开启复用,允许TIME_WAIT socket重新用于新的TCP连接,0表示关闭 
  5. net.ipv4.tcp_tw_recycle = 1   
  6. #1表示开启TIME_WAIT socket快速回收,0表示关闭 
  7. net.ipv4.tcp_max_tw_buckets = 4096    
  8. #系统保持TIME_WAIT socket***数量,如果超出这个数,系统将随机清除一些TIME_WAIT并打印警告信息 
  9. net.ipv4.tcp_max_syn_backlog = 4096 
  10. #进入SYN队列***长度,加大队列长度可容纳更多的等待连接 

 

在linux系统中,如果进程打开的文件句柄数量超过系统默认值1024,就会提示“too many files open”信息,所以要调整打开文件句柄限制。

 

  1. # vi /etc/security/limits.conf  #加入以下配置,*代表所有用户,也可以指定用户,重启系统生效 
  2. * soft nofile 65535 
  3. * hoft nofile 65535 
  4. # ulimit -SHn 65535   #立刻生效 

 

3.3 硬件配置

加大物理内存,为提高文件系统性能,linux内核会从内存中分配缓存区(系统缓存和文件缓存)来存放热数据,也就是说物理内存越大,分配缓存区越大,缓存数据越多。

SSD硬盘代替SAS硬盘,将RAID级别调整为RAID1+0,相对于RAID1和RAID5有更好的读写性能(IOPS),毕竟数据库的压力主要来自磁盘I/O方面。

#p#

4、数据库架构扩展

随着业务量越来越大,单台数据库服务器性能已无法满足业务需求,该考虑加机器了,该做集群了~~~。主要思想是分解单台数据库负载,突破磁盘I/O性能,热数据存放缓存中,降低磁盘I/O访问频率。

4.1 主从复制与读写分离

因为生产环境中,数据库大多都是读操作,所以部署一主多从架构,主数据库负责写操作,并做双击热备,多台从数据库做负载均衡,负责读操作,主流的负载均衡器有LVS、HAProxy、Nginx。怎么来实现读写分离呢?大多数企业是在代码层面实现读写分离,效率比较高。另一个种方式通过代理程序实现读写分离,企业中应用较少,常见代理程序有MySQL Proxy、Amoeba。在这样数据库集群架构中,大大增加数据库高并发能力,解决单台性能瓶颈问题。如果从数据库一台从库能处理2000 QPS,那么5台就能处理1w QPS,数据库横向扩展性也很容易。

主从复制博文:http://lizhenliang.blog.51cto.com/7876557/1290431

读写分离博文:http://lizhenliang.blog.51cto.com/7876557/1305083

4.2 增加缓存

给数据库增加缓存系统,提高读性能,缓存实现有本地缓存和分布式缓存,本地缓存是将数据缓存到本地服务器内存中或者文件中,速度快。分布式可以缓存海量数据,扩展容易,主流的分布式缓存系统有memcached、redis,memcached性能稳定,数据缓存在内存中,速度很快,QPS可达8w左右,可以把热数据缓存到内存中,如果内存缓存中有要请求的数据就不再去数据库中返回结果。

4.3 分库

分库是根据业务不同把相关的表切分到不同的数据库中,比如web、bbs、blog等库。如果业务量很大,还可将切分后的库做主从架构,进一步避免单个库压力过大。

4.4 分表

数据量的日剧增加,数据库中某个表有几百万条数据,导致查询和插入耗时太长,怎么能解决单表压力呢?你就该考虑是否把这个表拆分成多个小表,来减轻单个表的压力,提高处理效率,此方式称为分表。

分表技术比较麻烦,要修改程序代码里的SQL语句,还要手动去创建其他表,也可以用merge存储引擎实现分表,相对简单许多。分表后,程序是对一个总表进行操作,这个总表不存放数据,只有一些分表的关系,以及更新数据的方式,总表会根据不同的查询,将压力分到不同的小表上,因此提高并发能力和磁盘I/O 性能。

分表分为垂直拆分和水平拆分:

垂直拆分:把原来的一个很多字段的表拆分多个表,解决表的宽度问题。你可以把不常用的字段单独放到一个表中,也可以把大字段独立放一个表中,或者把关联密切的字段放一个表中。

水平拆分:把原来一个表拆分成多个表,每个表的结构都一样,解决单表数据量大的问题。

4.5 分区

分区就是把一张表的数据分成多个区块,这些区块可以在一个磁盘上,也可以在不同的磁盘上,分区后,表面上还是一张表,但数据散列在多个位置,这样一来,多块硬盘同时处理不同的请求,从而提高磁盘I/O读写性能,实现比较简单。

5、数据库维护

数据库维护是运维工程师或者DBA主要工作,包括性能监控、性能分析、性能调优、数据库备份和恢复等。

5.1 开启慢查询日志

MySQL开启慢查询日志,分析出哪条SQL语句比较慢,使用set设置变量,重启服务失效,可以在my.cnf添加参数***生效。

 

  1. mysql> set global slow-query-log=on  #开启慢查询功能 
  2. mysql> set global slow_query_log_file='/var/log/mysql/mysql-slow.log';  #指定慢查询日志文件位置 
  3. mysql> set global log_queries_not_using_indexes=on;   #记录没有使用索引的查询 
  4. mysql> set global long_query_time=1;   #只记录处理时间1s以上的慢查询 

 

分析慢查询日志,可以使用MySQL自带的mysqldumpslow工具,分析的日志较为简单。

# mysqldumpslow -t 3 /var/log/mysql/mysql-slow.log #查看最慢的前三个查询

也可以使用percona公司的pt-query-digest工具,日志分析功能全面,可分析slow log、binlog、general log。

分析慢查询日志:pt-query-digest /var/log/mysql/mysql-slow.log

分析binlog日志:mysqlbinlog mysql-bin.000001 >mysql-bin.000001.sql

pt-query-digest --type=binlog mysql-bin.000001.sql

分析普通日志:pt-query-digest --type=genlog localhost.log

5.2 数据库备份

备份数据库是最基本的工作,也是最重要的,否则后果很严重,你懂得!但由于数据库比较大,上百G,往往备份都很耗费时间,所以就该选择一个效率高的备份策略,对于数据量大的数据库,一般都采用增量备份。常用的备份工具有mysqldump、mysqlhotcopy、xtrabackup 等,mysqldump比较适用于小的数据库,因为是逻辑备份,所以备份和恢复耗时都比较长。mysqlhotcopy和xtrabackup是物理备份,备份和恢复速度快,不影响数据库服务情况下进行热拷贝,建议使用xtrabackup,支持增量备份。有兴趣可参考以往博文:http://lizhenliang.blog.51cto.com/7876557/1612800

5.3 数据库修复

有时候MySQL服务器突然断电、异常关闭,会导致表损坏,无法读取表数据。这时就可以用到MySQL自带的两个工具进行修复,myisamchk和mysqlcheck。

myisamchk:只能修复myisam表,需要停止数据库

常用参数:

-f --force 强制修复,覆盖老的临时文件,一般不使用

-r --recover 恢复模式

-q --quik 快速恢复

-a --analyze 分析表

-o --safe-recover 老的恢复模式,如果-r无法修复,可以使用此参数试试

-F --fast 只检查没有正常关闭的表

快速修复weibo数据库:

# cd /var/lib/mysql/weibo

# myisamchk -r -q *.MYI

mysqlcheck:myisam和innodb表都可以用,不需要停止数据库,如修复单个表,可在数据库后面添加表名,以空格分割

常用参数:

-a --all-databases 检查所有的库

-r --repair 修复表

-c --check 检查表,默认选项

-a --analyze 分析表

-o --optimize 优化表

-q --quik 最快检查或修复表

-F --fast 只检查没有正常关闭的表

快速修复weibo数据库:

mysqlcheck -r -q -uroot -p123 weibo

以上是本人使用MySQL三年来总结的一些主要优化方案,能力有限,有些不太全面,但这些基本能够满足中小型企业数据库需求。由于关系型数据库初衷设计限制,一些BAT公司海量数据放到关系型数据库中,在海量数据查询和分析方面已经达不到更好的性能。因此NoSQL火起来了,非关系型数据库,大数据量,具有高性能,同时也弥补了关系型数据库某方面不足,渐渐大多数公司已经将部分业务数据库存放到NoSQL中,如MongoDB、HBase等。数据存储方面采用分布式文件系统,如HDFS、GFS等。海量数据计算分析采用Hadoop、Spark、Storm等。这些都是与运维相关的前沿技术,也是在存储方面主要学习对象,小伙伴们共同加油吧!哪位博友有更好的优化方案,欢迎交流哦。
 

责任编辑:Ophira 来源: 51CTO
相关推荐

2015-05-15 10:04:28

localhost

2019-05-17 10:57:09

Mysql数据库运维

2016-01-07 15:21:26

2015-05-13 11:12:19

Linux企业运维技巧

2014-10-23 09:47:28

安全运维Iperf

2021-01-06 05:27:46

数据库运维角度

2015-04-07 11:47:18

运维管理IT运维

2015-04-17 11:17:15

大数据大数据择业

2023-10-11 11:33:35

2015-05-28 10:46:22

shellBackupdatabase

2018-12-14 11:04:56

数据库运维智能

2018-05-02 14:30:33

数据库运维优化故障

2018-05-08 09:49:15

数据库运维优化

2011-03-03 17:56:52

MySQL数据库优化

2014-12-11 10:31:22

网络优化KVM

2020-05-20 18:40:11

MySQL回表与索引数据库

2011-03-08 08:49:55

MySQL优化单机

2013-08-07 10:23:58

MySQL运维数据库运维

2019-04-25 15:35:37

MySQL数据库运维Linux

2018-09-18 09:36:52

运维数据库智能
点赞
收藏

51CTO技术栈公众号