Java 8测试使用:HashMap的性能提升

开发 后端
HashMap是一个高效通用的数据结构,它在每一个Java程序中都随处可见。先来介绍些基础知识。你可能也知道,HashMap使用key的hashCode()和equals()方法来将值划分到不同的桶里。桶的数量通常要比map中的记录的数量要稍大,这样每个桶包括的值会比较少(最好是一个)。当通过key进行查找时,我们可以在常数时间内迅速定位到某个桶(使用hashCode()对桶的数量进行取模)以及要找的对象。

HashMap是一个高效通用的数据结构,它在每一个Java程序中都随处可见。先来介绍些基础知识。你可能也知道,HashMap使用key的hashCode()和equals()方法来将值划分到不同的桶里。桶的数量通常要比map中的记录的数量要稍大,这样每个桶包括的值会比较少(最好是一个)。当通过key进行查找时,我们可以在常数时间内迅速定位到某个桶(使用hashCode()对桶的数量进行取模)以及要找的对象。

这些东西你应该都已经知道了。你可能还知道哈希碰撞会对hashMap的性能带来灾难性的影响。如果多个hashCode()的值落到同一个桶内的时候,这些值是存储到一个链表中的。最坏的情况下,所有的key都映射到同一个桶中,这样hashmap就退化成了一个链表——查找时间从O(1)到O(n)。我们先来测试下正常情况下hashmap在Java 7和Java 8中的表现。为了能完成控制hashCode()方法的行为,我们定义了如下的一个Key类:

  1. class Key implements Comparable<Key> { 
  2. private final int value; 
  3. Key(int value) { 
  4. this.value = value; 
  5. @Override 
  6. public int compareTo(Key o) { 
  7. return Integer.compare(this.value, o.value); 
  8. @Override 
  9. public boolean equals(Object o) { 
  10. if (this == o) return true
  11. if (o == null || getClass() != o.getClass()) 
  12. return false
  13. Key key = (Key) o; 
  14. return value == key.value; 
  15. @Override 
  16. public int hashCode() { 
  17. return value; 

Key类的实现中规中矩:它重写了equals()方法并且提供了一个还算过得去的hashCode()方法。为了避免过度的GC,我将不可变的Key对象缓存了起来,而不是每次都重新开始创建一遍:

  1. class Key implements Comparable<Key> { 
  2. public class Keys { 
  3. public static final int MAX_KEY = 10_000_000; 
  4. private static final Key[] KEYS_CACHE = new Key[MAX_KEY]; 
  5. static { 
  6. for (int i = 0; i < MAX_KEY; ++i) { 
  7. KEYS_CACHE[i] = new Key(i); 
  8. public static Key of(int value) { 
  9. return KEYS_CACHE[value]; 

现在我们可以开始进行测试了。我们的基准测试使用连续的Key值来创建了不同的大小的HashMap(10的乘方,从1到1百万)。在测试中我们还会使用key来进行查找,并测量不同大小的HashMap所花费的时间:

  1. import com.google.caliper.Param; 
  2. import com.google.caliper.Runner; 
  3. import com.google.caliper.SimpleBenchmark; 
  4. public class MapBenchmark extends SimpleBenchmark { 
  5. private HashMap<Key, Integer> map; 
  6. @Param 
  7. private int mapSize; 
  8. @Override 
  9. protected void setUp() throws Exception { 
  10. map = new HashMap<>(mapSize); 
  11. for (int i = 0; i < mapSize; ++i) { 
  12. map.put(Keys.of(i), i); 
  13. public void timeMapGet(int reps) { 
  14. for (int i = 0; i < reps; i++) { 
  15. map.get(Keys.of(i % mapSize)); 

有意思的是这个简单的HashMap.get()里面,Java 8比Java 7要快20%。整体的性能也相当不错:尽管HashMap里有一百万条记录,单个查询也只花了不到10纳秒,也就是大概我机器上的大概20个CPU周期。相当令人震撼!不过这并不是我们想要测量的目标。

假设有一个很差劲的key,他总是返回同一个值。这是最糟糕的场景了,这种情况完全就不应该使用HashMap:

  1. class Key implements Comparable<Key> { 
  2. //... 
  3. @Override 
  4. public int hashCode() { 
  5. return 0

Java 7的结果是预料中的。随着HashMap的大小的增长,get()方法的开销也越来越大。由于所有的记录都在同一个桶里的超长链表内,平均查询一条记录就需要遍历一半的列表。因此从图上可以看到,它的时间复杂度是O(n)。

不过Java 8的表现要好许多!它是一个log的曲线,因此它的性能要好上好几个数量级。尽管有严重的哈希碰撞,已是最坏的情况了,但这个同样的基准测试在JDK8中的时间复杂度是O(logn)。单独来看JDK 8的曲线的话会更清楚,这是一个对数线性分布:

为什么会有这么大的性能提升,尽管这里用的是大O符号(大O描述的是渐近上界)?其实这个优化在JEP-180中已经提到了。如果某个桶中的记录过大的话(当前是TREEIFY_THRESHOLD = 8),HashMap会动态的使用一个专门的treemap实现来替换掉它。这样做的结果会更好,是O(logn),而不是糟糕的O(n)。它是如何工作的?前面产生冲突的那些KEY对应的记录只是简单的追加到一个链表后面,这些记录只能通过遍历来进行查找。但是超过这个阈值后HashMap开始将列表升级成一个二叉树,使用哈希值作为树的分支变量,如果两个哈希值不等,但指向同一个桶的话,较大的那个会插入到右子树里。如果哈希值相等,HashMap希望key值最好是实现了Comparable接口的,这样它可以按照顺序来进行插入。这对HashMap的key来说并不是必须的,不过如果实现了当然最好。如果没有实现这个接口,在出现严重的哈希碰撞的时候,你就并别指望能获得性能提升了。

这个性能提升有什么用处?比方说恶意的程序,如果它知道我们用的是哈希算法,它可能会发送大量的请求,导致产生严重的哈希碰撞。然后不停的访问这些key就能显著的影响服务器的性能,这样就形成了一次拒绝服务攻击(DoS)。JDK 8中从O(n)到O(logn)的飞跃,可以有效地防止类似的攻击,同时也让HashMap性能的可预测性稍微增强了一些。我希望这个提升能最终说服你的老大同意升级到JDK 8来。

测试使用的环境是:Intel Core i7-3635QM @ 2.4 GHz,8GB内存,SSD硬盘,使用默认的JVM参数,运行在64位的Windows 8.1系统 上。

原文转自:Java 8:HashMap的性能提升

 
责任编辑:张伟 来源: Java译站
相关推荐

2014-04-28 10:17:01

2023-05-12 13:21:12

JMHJava程序

2011-07-21 10:42:26

2015-02-05 09:47:52

Web性能Web开发

2021-09-27 08:16:38

Webpack 前端Cache

2022-07-10 22:29:42

AtomicJDK项目

2013-09-11 16:11:57

C++StringBuild

2017-01-10 14:08:33

C++StringBuild性能

2009-03-30 09:10:53

微软浏览器IE8

2011-09-16 10:19:41

2015-11-10 09:25:05

HTTP2提升性能

2015-01-21 15:40:44

GoRuby

2009-10-19 10:26:39

2009-04-20 08:59:49

Firefox性能测试浏览器

2023-03-01 15:14:48

数据集机器学习

2017-03-13 09:50:00

HadoopHive

2012-03-12 13:54:56

ASP.NET

2015-02-04 09:19:03

Web优化

2014-07-31 09:28:09

ASP.NETWeb API

2013-05-22 09:38:03

GoGo语言Go性能
点赞
收藏

51CTO技术栈公众号