本文参考:数据结构(c语言版) 李云清等编著、算法导论
引言:
在文本编辑中,我们经常要在一段文本中某个特定的位置找出 某个特定的字符或模式。
由此,便产生了字符串的匹配问题。
本文由简单的字符串匹配算法开始,经Rabin-Karp算法,***到KMP算法,教你从头到尾彻底理解KMP算法。
来看算法导论一书上关于此字符串问题的定义:
假设文本是一个长度为n的数组T[1...n],模式是一个长度为m<=n的数组P[1....m]。
进一步假设P和T的元素都是属于有限字母表Σ.中的字符。
依据上图,再来解释下字符串匹配问题。目标是找出所有在文本T=abcabaabcaabac中的模式P=abaa所有出现。
该模式仅在文本中出现了一次,在位移s=3处。位移s=3是有效位移。
一、简单的字符串匹配算法
简单的字符串匹配算法用一个循环来找出所有有效位移,
该循环对n-m+1个可能的每一个s值检查条件P[1....m]=T[s+1....s+m]。
NAIVE-STRING-MATCHER(T, P)
1 n ← length[T]
2 m ← length[P]
3 for s ← 0 to n - m
4 do if P[1 ‥ m] = T[s + 1 ‥ s + m]
//对n-m+1个可能的位移s中的每一个值,比较相应的字符的循环必须执行m次。
5 then print "Pattern occurs with shift" s
简单字符串匹配算法,上图针对文本T=acaabc 和模式P=aab。
上述第4行代码,n-m+1个可能的位移s中的每一个值,比较相应的字符的循环必须执行m次。
所以,在最坏情况下,此简单模式匹配算法的运行时间为O((n-m+1)m)。
--------------------------------
下面我再来举个具体例子,并给出一具体运行程序:
对于目的字串target是banananobano,要匹配的字串pattern是nano,的情况,
下面是匹配过程,原理很简单,只要先和target字串的***个字符比较,
如果相同就比较下一个,如果不同就把pattern右移一下,
之后再从pattern的每一个字符比较,这个算法的运行过程如下图。
//index表示的每n次匹配的情形。
- #include<iostream>
- #include<string>
- using namespace std;
- int match(const string& target,const string& pattern)
- {
- int target_length = target.size();
- int pattern_length = pattern.size();
- int target_index = 0;
- int pattern_index = 0;
- while(target_index < target_length && pattern_index < pattern_length)
- (
- if(target[target_index]==pattern[pattern_index])
- {
- ++target_index;
- ++pattern_index;
- }
- else
- {
- target_index -= (pattern_index-1);
- pattern_index = 0;
- }
- }
- if(pattern_index == pattern_length)
- {
- return target_index - pattern_length;
- }
- else
- {
- return -1;
- }
- }
- int main()
- {
- cout<<match("banananobano","nano")<<endl;
- return 0;
- }
- //运行结果为4。
上面的算法进间复杂度是O(pattern_length*target_length),
我们主要把时间浪费在什么地方呢,
观查index =2那一步,我们已经匹配了3个字符,而第4个字符是不匹配的,这时我们已经匹配的字符序列是nan,
此时如果向右移动一位,那么nan***匹配的字符序列将是an,这肯定是不能匹配的,
之后再右移一位,匹配的是nan***匹配的序列是n,这是可以匹配的。
如果我们事先知道pattern本身的这些信息就不用每次匹配失败后都把target_index回退回去,
这种回退就浪费了很多不必要的时间,如果能事先计算出pattern本身的这些性质,
那么就可以在失配时直接把pattern移动到下一个可能的位置,
把其中根本不可能匹配的过程省略掉,
如上表所示我们在index=2时失配,此时就可以直接把pattern移动到index=4的状态,
kmp算法就是从此出发。
二、KMP算法
1、 覆盖函数(overlay_function)
覆盖函数所表征的是pattern本身的性质,可以让为其表征的是pattern从左开始的所有连续子串的自我覆盖程度。
比如如下的字串,abaabcaba
由于计数是从0始的,因此覆盖函数的值为0说明有1个匹配,对于从0还是从来开始计数是偏好问题,
具体请自行调整,其中-1表示没有覆盖,那么何为覆盖呢,下面比较数学的来看一下定义,比如对于序列
a0a1...aj-1 aj
要找到一个k,使它满足
a0a1...ak-1ak=aj-kaj-k+1...aj-1aj
而没有更大的k满足这个条件,就是说要找到尽可能大k,使pattern前k字符与后k字符相匹配,k要尽可能的大,
原因是如果有比较大的k存在,而我们选择较小的满足条件的k,
那么当失配时,我们就会使pattern向右移动的位置变大,而较少的移动位置是存在匹配的,这样我们就会把可能匹配的结果丢失。
比如下面的序列,
在红色部分失配,正确的结果是k=1的情况,把pattern右移4位,如果选择k=0,右移5位则会产生错误。
计算这个overlay函数的方法可以采用递推,可以想象如果对于pattern的前j个字符,如果覆盖函数值为k
a0a1...ak-1ak=aj-kaj-k+1...aj-1aj
则对于pattern的前j+1序列字符,则有如下可能
⑴ pattern[k+1]==pattern[j+1] 此时overlay(j+1)=k+1=overlay(j)+1
⑵ pattern[k+1]≠pattern[j+1] 此时只能在pattern前k+1个子符组所的子串中找到相应的overlay函数,h=overlay(k),如果此时pattern[h+1]==pattern[j+1],则overlay(j+1)=h+1否则重复(2)过程.
下面给出一段计算覆盖函数的代码:
- #include<iostream>
- #include<string>
- using namespace std;
- void compute_overlay(const string& pattern)
- {
- const int pattern_length = pattern.size();
- int *overlay_function = new int[pattern_length];
- int index;
- overlay_function[0] = -1;
- for(int i=1;i<pattern_length;++i)
- {
- index = overlay_function[i-1];
- //store previous fail position k to index;
- while(index>=0 && pattern[i]!=pattern[index+1])
- {
- index = overlay_function[index];
- }
- if(pattern[i]==pattern[index+1])
- {
- overlay_function[i] = index + 1;
- }
- else
- {
- overlay_function[i] = -1;
- }
- }
- for(i=0;i<pattern_length;++i)
- {
- cout<<overlay_function[i]<<endl;
- }
- delete[] overlay_function;
- }
- int main()
- {
- string pattern = "abaabcaba";
- compute_overlay(pattern);
- return 0;
- }
运行结果为:
-1
-1
0
0
1
-1
0
1
2
Press any key to continue
-------------------------------------
2、kmp算法
有了覆盖函数,那么实现kmp算法就是很简单的了,我们的原则还是从左向右匹配,但是当失配发生时,我们不用把target_index向回移 动,target_index前面已经匹配过的部分在pattern自身就能体现出来,只要动pattern_index就可以了。
当发生在j长度失配时,只要把pattern向右移动j-overlay(j)长度就可以了。
如果失配时pattern_index==0,相当于pattern***个字符就不匹配,
这时就应该把target_index加1,向右移动1位就可以了。
ok,下图就是KMP算法的过程(红色即是采用KMP算法的执行过程):
ok,***给出KMP算法实现的c++代码:
- #include<iostream>
- #include<string>
- #include<vector>
- using namespace std;
- int kmp_find(const string& target,const string& pattern)
- {
- const int target_length = target.size();
- const int pattern_length = pattern.size();
- int * overlay_value = new int[pattern_length];
- overlay_value[0] = -1;
- int index = 0;
- for(int i=1;i<pattern_length;++i)
- {
- index = overlay_value[i-1];
- while(index>=0 && pattern[index+1]!=pattern[i])
- {
- index = overlay_value[index];
- }
- if(pattern[index+1]==pattern[i])
- {
- overlay_value[i] = index +1;
- }
- else
- {
- overlay_value[i] = -1;
- }
- }
- //match algorithm start
- int pattern_index = 0;
- int target_index = 0;
- while(pattern_index<pattern_length&&target_index<target_length)
- {
- if(target[target_index]==pattern[pattern_index])
- {
- ++target_index;
- ++pattern_index;
- }
- else if(pattern_index==0)
- {
- ++target_index;
- }
- else
- {
- pattern_index = overlay_value[pattern_index-1]+1;
- }
- }
- if(pattern_index==pattern_length)
- {
- return target_index-pattern_index;
- }
- else
- {
- return -1;
- }
- delete [] overlay_value;
- }
- int main()
- {
- string source = " annbcdanacadsannannabnna";
- string pattern = " annacanna";
- cout<<kmp_find(source,pattern)<<endl;
- return 0;
- }
- //运行结果为 -1.
三、kmp算法的来源
kmp如此精巧,那么它是怎么来的呢,为什么要三个人合力才能想出来。其实就算没有kmp算法,人们在字符匹配中也能找到相同高效的算法。这种算法,最终 相当于kmp算法,只是这种算法的出发点不是覆盖函数,不是直接从匹配的内在原理出发,而使用此方法的计算的覆盖函数过程序复杂且不易被理解,但是一但找 到这个覆盖函数,那以后使用同一pattern匹配时的效率就和kmp一样了,其实这种算法找到的函数不应叫做覆盖函数,因为在寻找过程中根本没有考虑是 否覆盖的问题。
说了这么半天那么这种方法是什么呢,这种方法是就大名鼎鼎的确定的有限自动机(Deterministic finite state automaton DFA),DFA可识别的文法是3型文法,又叫正规文法或是正则文法,既然可以识别正则文法,那么识别确定的字串肯定不是问题(确定字串是正则式的一个子 集)。对于如何构造DFA,是有一个完整的算法,这里不做介绍了。在识别确定的字串时使用DFA实在是大材小用,DFA可以识别更加通用的正则表达式,而 用通用的构建DFA的方法来识别确定的字串,那这个overhead就显得太大了。
kmp算法的可贵之处是从字符匹配的问题本身特点出发,巧妙使用覆盖函数这一表征pattern自身特点的这一概念来快速直接生成识别字串的DFA,因此对于kmp这种算法,理解这种算法高中数学就可以了,但是如果想从无到有设计出这种算法是要求有比较深的数学功底的。
原文:http://www.2cto.com/kf/201104/87381.html
作者声明:个人July 对此24个经典算法系列,享有版权,转载请注明出处。