机器学习(Machine Learning)&深入学习(Deep Learning)资料

开发 后端 开发工具
机器学习(Machine Learning)和深入学习(Deep Learning)必备书籍,文中推荐的文章从初级到实践全部囊括了。本文的书籍全部来自于互联网整理,详细请看下文。

介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost 到随机森林、Deep Learning.

介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的***版本《神经网络与深度学习综述》本综述的特点是以时间排序,从 1940 年开始讲起,到 60-80 年代,80-90 年代,一直讲到 2000 年后及最近几年的进展。涵盖了 deep learning 里各种 tricks,引用非常全面.

介绍:这是一份 python 机器学习库,如果您是一位 python 工程师而且想深入机器学习.那么这篇文章或许能够帮助到你.

介绍:这一篇介绍如果设计和管理属于你自己的机器学习项目的文章,里面提供了管理模版、数据管理与实践方法.

介绍:如果你还不知道什么是机器学习,或则是刚刚学习感觉到很枯燥乏味。那么推荐一读。这篇文章已经被翻译成中文,如果有兴趣可以移步 http://blog.jobbole.com/67616/

介绍:R语言是机器学习的主要语言,有很多的朋友想学习R语言,但是总是忘记一些函数与关键字的含义。那么这篇文章或许能够帮助到你

介绍:我该如何选择机器学习算法,这篇文章比较直观的比较了 Naive Bayes,Logistic Regression,SVM,决策树等方法的优劣,另外讨论了样本大小、Feature 与 Model 权衡等问题。此外还有已经翻译了的版本:http://www.52ml.net/15063.html

介绍:深度学习概述:从感知机到深度网络,作者对于例子的选择、理论的介绍都很到位,由浅入深。翻译版本:http://www.cnblogs.com/xiaowanyer/p/3701944.html

介绍:<机器学习与优化>这是一本机器学习的小册子, 短短 300 多页道尽机器学习的方方面面. 图文并茂, 生动易懂, 没有一坨坨公式的烦恼. 适合新手入门打基础, 也适合老手温故而知新. 比起 MLAPP/PRML 等大部头, 也许这本你更需要!具体内容推荐阅读:http://intelligent-optimization.org/LIONbook/

介绍:作者是来自百度,不过他本人已经在 2014 年 4 月份申请离职了。但是这篇文章很不错如果你不知道深度学习与支持向量机/统计学习理论有什么联系?那么应该立即看看这篇文章.

介绍:这本书是由谷歌公司和 MIT 共同出品的计算机科学中的数学:Mathematics for Computer Science,Eric Lehman et al 2013 。分为 5 大部分:1)证明,归纳。2)结构,数论,图。3)计数,求和,生成函数。4)概率,随机行走。5)递归。等等

介绍:这是一本由雪城大学新编的第二版《数据科学入门》教材:偏实用型,浅显易懂,适合想学习R语言的同学选读。

介绍:这并不是一篇文档或书籍。这是篇向图灵奖得主 Donald Knuth 提问记录稿: 近日, Charles Leiserson, Al Aho, Jon Bentley 等大神向 Knuth 提出了 20 个问题,内容包括 TAOCP,P/NP 问题,图灵机,逻辑,以及为什么大神不用电邮等等。

介绍:不会统计怎么办?不知道如何选择合适的统计模型怎么办?那这篇文章你的好好读一读了麻省理工 Joshua B. Tenenbaum 和剑桥 Zoubin Ghahramani 合作,写了一篇关于 automatic statistician 的文章。可以自动选择回归模型类别,还能自动写报告...

介绍:对深度学习和 representation learning ***进展有兴趣的同学可以了解一下

介绍:这是一本信息检索相关的书籍,是由斯坦福 Manning 与谷歌副总裁 Raghavan 等合著的 Introduction to Information Retrieval 一直是北美***的信息检索教材之一。最近作者增加了该课程的幻灯片和作业。IR 相关资源:http://www-nlp.stanford.edu/IR-book/information-retrieval.html

介绍:Deniz Yuret 用 10 张漂亮的图来解释机器学习重要概念:1. Bias/Variance Tradeoff 2. Overfitting 3. Bayesian / Occam's razor 4. Feature combination 5. Irrelevant feature 6. Basis function 7. Discriminative / Generative 8. Loss function 9. Least squares 10. Sparsity. 很清晰

介绍:雅虎研究院的数据集汇总: 包括语言类数据,图与社交类数据,评分与分类数据,计算广告学数据,图像数据,竞赛数据,以及系统类的数据。

介绍:这是一本斯坦福统计学著名教授 Trevor Hastie 和 Robert Tibshirani 的新书,并且在 2014 年一月已经开课:https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about

介绍:机器学习***入门学习资料汇总是专为机器学习初学者推荐的优质学习资源,帮助初学者快速入门。而且这篇文章的介绍已经被翻译成中文版。如果你不怎么熟悉,那么我建议你先看一看中文的介绍。

介绍:主要是顺着 Bengio 的 PAMI review 的文章找出来的。包括几本综述文章,将近 100 篇论文,各位山头们的 Presentation。全部都可以在 google 上找到。

介绍:这是一本书籍,主要介绍的是跨语言信息检索方面的知识。理论很多

介绍:本文共有三个系列,作者是来自 IBM 的工程师。它主要介绍了推荐引擎相关算法,并帮助读者高效的实现这些算法。探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法 - 协同过滤,探索推荐引擎内部的秘密,第 3 部分: 深入推荐引擎相关算法 - 聚类

介绍:康奈尔大学信息科学系助理教授 David Mimno 写的《对机器学习初学者的一点建议》, 写的挺实际,强调实践与理论结合,***还引用了冯 · 诺依曼的名言: "Young man, in mathematics you don't understand things. You just get used to them."

介绍:这是一本关于分布式并行处理的数据《Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises》,作者是斯坦福的 James L. McClelland。着重介绍了各种神级网络算法的分布式实现,做 Distributed Deep Learning 的童鞋可以参考下

介绍:【“机器学习”是什么?】John Platt 是微软研究院杰出科学家,17 年来他一直在机器学习领域耕耘。近年来机器学习变得炙手可热,Platt 和同事们遂决定开设博客,向公众介绍机器学习的研究进展。机器学习是什么,被应用在哪里?来看 Platt 的这篇博文

介绍:2014 年国际机器学习大会(ICML)已经于 6 月 21-26 日在国家会议中心隆重举办。本次大会由微软亚洲研究院和清华大学联手主办,是这个有着 30 多年历史并享誉世界的机器学习领域的盛会***来到中国,已成功吸引海内外 1200 多位学者的报名参与。干货很多,值得深入学习下

介绍:这篇文章主要是以 Learning to Rank 为例说明企业界机器学习的具体应用,RankNet 对 NDCG 之类不敏感,加入 NDCG 因素后变成了 LambdaRank,同样的思想从神经网络改为应用到 Boosted Tree 模型就成就了 LambdaMART。Chirs Burges,微软的机器学习大神,Yahoo 2010 Learning to Rank Challenge ***名得主,排序模型方面有 RankNet,LambdaRank,LambdaMART,尤其以 LambdaMART 最为突出,代表论文为: From RankNet to LambdaRank to LambdaMART: An Overview 此外,Burges 还有很多有名的代表作,比如:A Tutorial on Support Vector Machines for Pattern Recognition
Some Notes on Applied Mathematics for Machine Learning

介绍:100 Best GitHub: Deep Learning

介绍:本教程将阐述无监督特征学习和深度学习的主要观点。通过学习,你也将实现多个功能学习/深度学习算法,能看到它们为你工作,并学习如何应用/适应这些想法到新问题上。本教程假定机器学习的基本知识(特别是熟悉的监督学习,逻辑回归,梯度下降的想法),如果你不熟悉这些想法,我们建议你去这里机器学习课程,并先完成第 II,III,IV 章(到逻辑回归)。此外这关于这套教程的源代码在 github 上面已经有 python 版本了 UFLDL Tutorial Code

*《Deep Learning for Natural Language Processing and Related Applications》

介绍:这份文档来自微软研究院,精髓很多。如果需要完全理解,需要一定的机器学习基础。不过有些地方会让人眼前一亮,毛塞顿开。

介绍:这是一篇介绍图像卷积运算的文章,讲的已经算比较详细的了

介绍:每天请一个大牛来讲座,主要涉及机器学习,大数据分析,并行计算以及人脑研究。https://www.youtube.com/user/smolix 

介绍:一个超级完整的机器学习开源库总结,如果你认为这个碉堡了,那后面这个列表会更让你惊讶:【Awesome Awesomeness】,国内已经有热心的朋友进行了翻译中文介绍

介绍:ACL 候任主席、斯坦福大学计算机系 Chris Manning 教授的《自然语言处理》课程所有视频已经可以在斯坦福公开课网站上观看了(如 Chrome 不行,可用 IE 观看) 作业与测验也可以下载。

介绍:对比 Deep Learning 和 Shallow Learning 的好文,来着浙大毕业、MIT 读博的 Chiyuan Zhang 的博客。

介绍:利用卷积神经网络做音乐推荐。

介绍:神经网络的免费在线书,已经写了三章了,还有对应的开源代码:https://github.com/mnielsen/neural-networks-and-deep-learning 爱好者的福音。

介绍:Java 机器学习相关平台和开源的机器学习库,按照大数据、NLP、计算机视觉和 Deep Learning 分类进行了整理。看起来挺全的,Java 爱好者值得收藏。

介绍:机器学习最基本的入门文章,适合零基础者

介绍:机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,***个方面是学习的方式,第二个方面是算法的类似性。

介绍:看题目你已经知道了是什么内容,没错。里面有很多经典的机器学习论文值得仔细与反复的阅读。

介绍:视频由加州理工学院(Caltech)出品。需要英语底子。

介绍:总结了机器学习的经典书籍,包括数学基础和算法理论的书籍,可做为入门参考书单。

介绍:16 本机器学习的电子书,可以下载下来在 pad,手机上面任意时刻去阅读。不多我建议你看完一本再下载一本。

介绍:标题很大,从新手到专家。不过看完上面所有资料。肯定是专家了

介绍:入门的书真的很多,而且我已经帮你找齐了。

介绍:Sibyl 是一个监督式机器学习系统,用来解决预测方面的问题,比如 YouTube 的视频推荐。

介绍:Yoshua Bengio, Ian Goodfellow, Aaron Courville 著

介绍:关于(Deep) Neural Networks 在 NLP 和 Text Mining 方面一些 paper 的总结

介绍:计算机视觉入门之前景目标检测1(总结)

介绍:计算机视觉入门之行人检测

介绍:Important resources for learning and understanding . Is awesome

介绍:这又是一篇机器学习初学者的入门文章。值得一读

介绍:在线 Neural Networks and Deep Learning 电子书

介绍:python 的 17 个关于机器学习的工具

介绍:下集在这里神奇的伽玛函数(下)

介绍:作者王益目前是腾讯广告算法总监,王益博士毕业后在 google 任研究。这篇文章王益博士 7 年来从谷歌到腾讯对于分布机器学习的所见所闻。值得细读

介绍:把机器学习提升的级别分为0~4 级,每级需要学习的教材和掌握的知识。这样,给机器学习者提供一个上进的路线图,以免走弯路。另外,整个网站都是关于机器学习的,资源很丰富。

介绍:机器学习各个方向综述的网站

介绍:深入学习阅资源列表

介绍:这是一本来自微的研究员 li Peng 和 Dong Yu 所著的关于深入学习的方法和应用的电子书

介绍:2014 年七月 CMU 举办的机器学习夏季课刚刚结束有近 50 小时的视频、十多个 PDF 版幻灯片,覆盖深度学习,贝叶斯,分布式机器学习,伸缩性等热点话题。所有 13 名讲师都是牛人:包括大牛 Tom Mitchell (他的[机器学习]是名校的常用教材),还有 CMU 李沐 .(1080P 高清哟)

介绍:在今年的 IEEE/IFIP 可靠系统和网络(DSN)国际会议上,Google 软件工程师 Tushar Chandra 做了一个关于 Sibyl 系统的主题演讲。 Sibyl 是一个监督式机器学习系统,用来解决预测方面的问题,比如 YouTube 的视频推荐。详情请阅读 google sibyl

介绍:谷歌研究院的 Christian Szegedy 在谷歌研究院的博客上简要地介绍了他们今年参加 ImageNet 取得好成绩的 GoogLeNet 系统.是关于图像处理的。

介绍:贝叶斯学习。如果不是很清可看看概率编程语言与贝叶斯方法实践

介绍:网友问伯克利机器学习大牛、美国双料院士 Michael I. Jordan:"如果你有 10 亿美金,你怎么花?Jordan: "我会用这 10 亿美金建造一个 NASA 级别的自然语言处理研究项目。"

介绍:常见面试之机器学习算法思想简单梳理

介绍:Videolectures 上***的 25 个文本与数据挖掘视频汇总

介绍:在 Kaggle 上经常取得不错成绩的 Tim Dettmers 介绍了他自己是怎么选择深度学习的 GPUs, 以及个人如何构建深度学习的 GPU 集群: http://t.cn/RhpuD1G

介绍:对话机器学习大神 Michael Jordan

责任编辑:林师授 来源: github.com
相关推荐

2017-08-17 13:26:34

机器学习监督学习强化学习

2021-04-13 10:25:33

人工智能深度学习

2023-10-31 16:40:39

机器学习强化学习

2018-03-26 20:12:42

深度学习

2018-04-21 06:41:39

Q-learning算法函数

2009-11-17 14:13:34

PHP配置

2015-09-29 08:57:46

javascript对象

2010-09-28 09:22:34

DOM模型Html

2020-03-23 14:15:51

RadonDB安装数据库

2010-08-31 13:06:45

CSS

2010-06-29 15:29:22

UML建模流程

2015-09-29 09:27:04

JavaScript对象

2019-05-21 08:00:22

推荐算法数据科学存储库

2021-05-27 08:38:47

机器学习Few-shot Le深度学习

2010-09-25 14:38:18

Java内存分配

2023-12-12 13:13:00

内存C++编程语言

2010-08-11 09:29:25

FlexJava数据模型

2019-07-08 20:00:35

Linux内核模块

2010-09-28 14:35:34

DOM遍历

2024-01-03 10:15:59

Python函数
点赞
收藏

51CTO技术栈公众号