小喇叭开始广播:以太网与WiFi协议

网络 网络管理
以太网和WiFi是连接层的两种协议,在连接层,信息以帧为单位传输。帧像信封一样将数据包裹起来,并注明收信地址和送信地址。连接层实现了“本地社区”的通信。

“小喇叭开始广播啦”,如果你知道这个,你一定是老一辈的人。“小喇叭”是五十年代到八十年代的儿童广播节目。在节目一开始,都会有一段这样的播音:“小朋友,小喇叭开始广播了!” 听到这里,收音机前的小朋友就兴奋起来,准备好听节目了:这一期的内容是以太网(Ethernet)协议与WiFi。

[[120282]]

我们在邮差与邮局中说到,以太网和WiFi是连接层的两种协议。在连接层,信息以帧(frame)为单位传输。帧像信封一样将数据(payload)包裹起来,并注明收信地址和送信地址。连接层实现了“本地社区”的通信。我们先来看看以太网的帧。

以太网的帧格式

帧本身是一段有限的0/1序列。它可以分为头部、数据(Payload)和尾部三部分:

以太网的帧格式

帧按照上面的顺序从头到尾依次被发送/接收。我们下面进一步解释各个区域。

头部

帧的最初7个byte被称为序言(preamble)。它的每个byte都是0xAA(这里是十六进制,也就是二进制的10101010)。通常,我们都会预定好以一定的频率发送0/1序列(比如每秒10bit)。如果接收设备以其他频率接收(比如每秒5bit),那么就会错漏掉应该接收的0/1信息。但是,由于网卡的不同,发送方和接收方即使预订的频率相同,两者也可能由于物理原因发生偏差。这就好像两个人约好的10点见,结果一个人表快,一个人表慢一样。序言是为了让接收设备调整接收频率,以便与发送设备的频率一致,这个过程就叫做时钟复原(recover the clock)。

(就像在收听广播之前,调整转钮,直到声音清晰。网卡会在接收序言的过程中不断微调自己的接收频率,直到自己“听到”是...1010...)

时钟调整好之后,我们等待帧的起始信号(SFD, start frame delimiter)。SFD是固定的值0xAB。这个0xAB就好像“小喇叭开始广播啦”一样,提醒我们好节目就要上演了。

[[120284]]

Preamble和SFD

紧随SFD之后的是6 byte的目的地(DST, destination)和6 byte的发出地(SRC, source)。这就是我们在邮差和邮局中的介绍一样,为信封写上目的地和发出地。要注意,这里写在信封上的是对地址的“本地描述”,也就是MAC地址。MAC地址是物理设备自带的序号,只能在同一个以太网中被识别 (正如邮差只熟悉自己的社区一样)。

头部的最后一个区域是Type,用以说明数据部分的类型。(比如0x0800为IPv4,0x0806为ARP)

数据

数据一般包含有符合更高层协议的数据,比如IP包。连接层协议本身并不在乎数据是什么,它只负责传输。注意,数据尾部可能填充有一串0(PAD区域)。原因是数据需要超过一定的最小长度。

尾部

跟随在数据之后的是校验序列(FCS, Frame Check Sequence)。校验序列是为了检验数据的传输是否发生错误。在物理层,我们通过一些物理信号来表示0/1序列(比如高压/低压,高频率/低频率等),但这些物理信号可能在传输过程中受到影响,以致于发生错误。如何来发现我们的数据是正确的呢?

一个方法是将数据发送两遍,然后对比一下是否一样。但这样就大大降低了网络的效率。FCS采用了CRC(Cyclic Redundancy Check)算法。这就好像是一家饭店的老板雇佣了一个收银员,但他又担心收银员黑钱。可是每天营业额很大,老板即使坐在旁边看,也不能用记住收到的总数。所以他采取了一个聪明的办法:只记住收到钱的最后一位 (比如收到19元,老板记住9)。当有新的进账(比如13,尾数为3),他就将新的尾数和旧的尾数相加,再记住和的尾数(也就是2)。当收银员交给老板钱的时候,老板只用看总额的最后一位是否和自己记的最后一位相同,就可以知道收银员是否诚实了。如果说我们的数据是收银的总额的话,我们的FCS就是老板记录的尾数。如果两者不相符,我们就知道数据在传输的过程中出现错误,不能使用。

[[120285]]

有FCS在盯着#p#

上面的比喻实际上是用营业总额不断的除以10,获得最终的尾数。CRC算法也相类似。n位CRC算法取一个n bit的因子,比如下面的1011。数据序列结尾增加n-1个0。因子与数据序列的不断进行XOR运算,直到得到n-1位的余数,也就是100。该余数各位取反(011),然后存储在FCS的位置。

11010011101100 000 <--- 数据序列末尾增加3位0
1011               <--- 因子
01100011101100 000 <--- XOR结果
 1011              <--- 因子
00111011101100 000
  1011
00010111101100 000
   1011
00000001101100 000
       1011
00000000110100 000
        1011
00000000011000 000
         1011
00000000001110 000
          1011
00000000000101 000 
           101 1
-----------------
00000000000000 100 <--- 3位余数

上面例子用的是4位CRC。在Ethernet中使用的因子为32位的,以达到更好的检测效果。

集线器(Hub) vs. 交换器(Switch)

以太网使用集线器或者交换器将帧从发出地传送到目的地。一台集线器或交换器上有多个端口,每个端口都可以连接一台计算机(或其他设备)。

集线器像一个广播电台。一台电脑将帧发送到集线器,集线器会将帧转发到所有其他的端口。每台计算机检查自己的MAC地址是不是符合DST。如果不是,则保持沉默。集线器是比较早期的以太网设备。它有明显的缺陷:

1) 任意两台电脑的通信在同一个以太网上是公开的。所有连接在同一个集线器上的设备都能收听到别人在传输什么,这样很不安全。可以通过对信息加密提高安全性。

2) 不允许多路同时通信。如果两台电脑同时向集线器发信,集线器会向所有设备发出“冲突”信息,提醒发生冲突。可以在设备上增加冲突检测算法(collision detection):一旦设备发现有冲突,则随机等待一段时间再重新发送。

交换器克服集线器的缺陷。交换器记录有各个设备的MAC地址。当帧发送到交换器时,交换器会检查DST,然后将帧只发送到对应端口。交换器允许多路同时通信。由于交换器的优越性,交换器基本上取代了集线器。但比较老的以太网还有可能在使用集线器。

 

下面的一个视频来自CISCO,更加形象的解释了这两种设备

 

WiFi

WiFi的工作方式与集线器连接下的以太网类似。一个WiFi设备会向所有的WiFi设备发送帧,其它的WiFi设备检查自己是否符合DST。由于WiFi采取无线电信号,所以很难像交换器一样定向发送,所以WiFi的安全性很值得关注。WiFi采用加密的方法来实现信息的安全性。

(早期的WEP加密方法非常脆弱,建议使用WPA或者WPA2加密方法。隐藏WiFi设备ID的方法不是很有用。)

总结

我们深入了连接层协议的一些细节。连接层是物理与逻辑的接口,它的设计兼顾了物理需求(比如时钟复原,CRC)和逻辑需求(比如地址、数据)。由于连接层处于网络逻辑的底层,有许多基于连接层的攻击手法,这需要我们对连接层的工作方式有一定的了解,以设计出更好的网络安全策略。

 

责任编辑:林琳 来源: Vamei
相关推荐

2023-07-14 15:01:29

2009-08-02 17:26:11

以太网电源以太网供电

2010-03-11 09:33:54

2023-03-29 10:03:36

2019-02-22 21:26:05

2012-04-18 10:29:19

WiFi

2017-03-20 15:41:42

以太网物联网

2010-03-18 10:38:08

2013-12-19 09:16:15

以太网结构以太网

2009-02-22 09:11:16

Windows音量显示

2023-05-22 10:09:03

以太网

2009-02-19 10:18:32

FCoE增强型以太网以太网光纤

2022-09-20 11:32:32

以太网电缆基础网络

2011-09-14 14:41:14

以太网

2011-03-21 13:24:40

节能以太网数据中心

2013-11-25 09:10:55

节能以太网EEE

2011-11-25 15:01:26

LFR交换机大型二层网络

2012-10-19 09:42:26

以太网400G以太网兆兆以太网

2017-01-19 11:18:37

2012-09-26 15:46:51

网络
点赞
收藏

51CTO技术栈公众号