Hadoop伪分布配置与基于Eclipse开发环境搭建

大数据 Hadoop
最近一直在摸索Hadoop2的配置,因为Hadoop2对原有的一些框架API做了调整,但也还是兼容旧版本的(包括配置)。像我这种就喜欢用新的东西的人,当然要尝一下鲜了,现在网上比较少新版本的配置教程,那么下面我就来分享一下我自己的实战经验,如有不正确的地欢迎指正。

1、开发配置环境:

开发环境:Win7(64bit)+Eclipse(kepler service release 2)

配置环境:Ubuntu Server 14.04.1 LTS(64-bit only)

辅助工具:WinSCP + Putty

Hadoop版本:2.5.0

Hadoop的Eclipse开发插件(2.x版本适用):http://pan.baidu.com/s/1eQy49sm

服务器端JDK版本:OpenJDK7.0

以上所有工具请自行下载安装。

2、Hadoop服务端配置(Master节点)

最近一直在摸索Hadoop2的配置,因为Hadoop2对原有的一些框架API做了调整,但也还是兼容旧版本的(包括配置)。像我这种就喜欢用新的东西的人,当然要尝一下鲜了,现在网上比较少新版本的配置教程,那么下面我就来分享一下我自己的实战经验,如有不正确的地欢迎指正:)。

  假设我们已经成功地安装了Ubuntu Server、OpenJDK、SSH,如果还没有安装的话请先安装,自己网上找一下教程,这里我就说一下SSH的无口令登陆设置。首先通过

$ ssh localhost 
  • 1.

测试一下自己有没有设置好无口令登陆,如果没有设置好,系统将要求你输入密码,通过下面的设置可以实现无口令登陆,具体原理请百度谷歌:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa  
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys 
  • 1.
  • 2.

其次是Hadoop安装(假设已经安装好OpenJDK以及配置好了环境变量),到Hadoop官网下载一个Hadoop2.5.0版本的下来,好像大概有100多M的tar.gz包,下载 下来后自行解压,我的是放在/usr/mywind下面,Hadoop主目录完整路径是/usr/mywind/hadoop,这个路径根据你个人喜好放吧。

解压完后,打开hadoop主目录下的etc/hadoop/hadoop-env.sh文件,在最后面加入下面内容:

# set to the root of your Java installation  
  export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64  
    
# Assuming your installation directory is /usr/mywind/hadoop  
export HADOOP_PREFIX=/usr/mywind/hadoop 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

为了方便起见,我建设把Hadoop的bin目录及sbin目录也加入到环境变量中,我是直接修改了Ubuntu的/etc/environment文件,内容如下:

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/usr/lib/jvm/java-7-openjdk-amd64/bin:/usr/mywind/hadoop/bin:/usr/mywind/hadoop/sbin" 
JAVA_HOME="/usr/lib/jvm/java-7-openjdk-amd64" 
CLASSPATH=".:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar" 
  • 1.
  • 2.
  • 3.

也可以通过修改profile来完成这个设置,看个人习惯咯。假如上面的设置你都完成了,可以在命令行里面测试一下Hadoop命令,如下图:

假如你能看到上面的结果,恭喜你,Hadoop安装完成了。接下来我们可以进行伪分布配置(Hadoop可以在伪分布模式下运行单结点)。

接下来我们要配置的文件有四个,分别是/usr/mywind/hadoop/etc/hadoop目录下的yarn-site.xml、mapred-site.xml、hdfs-site.xml、core-site.xml(注意:这个版本下默认没有yarn-site.xml文件,但有个yarn-site.xml.properties文件,把后缀修改成前者即可),关于yarn新特性可以参考官网或者这个文章http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/。

首先是core-site.xml配置HDFS地址及临时目录(默认的临时目录在重启后会删除):

<configuration> 
    <property> 
        <name>fs.defaultFS</name> 
        <value>hdfs://192.168.8.184:9000</value> 
         <description>same as fs.default.name</description> 
    </property> 
     <property> 
       <name>hadoop.tmp.dir</name> 
       <value>/usr/mywind/tmp</value> 
        <description>A base for other temporary directories.</description> 
     </property> 
</configuration> 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

然后是hdfs-site.xml配置集群数量及其他一些可选配置比如NameNode目录、DataNode目录等等:

<configuration> 
     <property> 
        <name>dfs.namenode.name.dir</name> 
        <value>/usr/mywind/name</value> 
        <description>same as dfs.name.dir</description> 
     </property> 
     <property> 
        <name>dfs.datanode.data.dir</name> 
        <value>/usr/mywind/data</value> 
        <description>same as dfs.data.dir</description> 
     </property> 
     <property> 
        <name>dfs.replication</name> 
        <value>1</value> 
        <description>same as old frame,recommend set the value as the cluster DataNode host numbers!</description> 
     </property> 
</configuration> 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.

接着是mapred-site.xml配置启用yarn框架:

<configuration> 
    <property> 
        <name>mapreduce.framework.name</name> 
        <value>yarn</value> 
    </property> 
</configuration> 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

最后是yarn-site.xml配置NodeManager:

<configuration> 
 <!-- Site specific YARN configuration properties -->   
  <property>   
         <name>yarn.nodemanager.aux-services</name>   
         <value>mapreduce_shuffle</value>   
  </property>   
</configuration> 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

注意,网上的旧版本教程可能会把value写成mapreduce.shuffle,这个要特别注意一下的,至此我们所有的文件配置都已经完成了,下面进行HDFS文件系统进行格式化:

$ hdfs namenode -format 
  • 1.

然后启用NameNode及DataNode进程:

$ start-yarn.sh 
  • 1.

然后创建hdfs文件目录

$ hdfs dfs -mkdir /user  
$ hdfs dfs -mkdir /user/a01513 
  • 1.
  • 2.

注意,这个a01513是我在Ubuntu上的用户名,最好保持与系统用户名一致,据说不一致会有许多权限等问题,我之前试过改成其他名字,报错,实在麻烦就改成跟系统用户名一致吧。

然后把要测试的输入文件放在文件系统中:
 

$ hdfs dfs -put /usr/mywind/psa input 
  • 1.

文件内容是Hadoop经典的天气例子的数据:

12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+001212345678903456  
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+011212345678903456  
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+021212345678903456  
12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+003212345678903456  
12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+004212345678903456  
12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+010212345678903456  
12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+011212345678903456  
12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+041212345678903456  
12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+008212345678903456 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

把文件拷贝到HDFS目录之后,我们可以通过浏览器查看相关的文件及一些状态:

http://192.168.8.184:50070/

这里的IP地址根据你实际的Hadoop服务器地址啦。

好吧,我们所有的Hadoop后台服务搭建跟数据准备都已经完成了,那么我们的M/R程序也要开始动手写了,不过在写当然先配置开发环境了。

3、基于Eclipse的Hadoop2.x开发环境配置

关于JDK及ECLIPSE的安装我就不再介绍了,相信能玩Hadoop的人对这种配置都已经再熟悉不过了,如果实在不懂建议到谷歌百度去搜索一下教程。假设你已经把Hadoop的Eclipse插件下载下来了,然后解压把jar文件放到Eclipse的plugins文件夹里面:

重启Eclipse即可。

然后我们再安装Hadoop到Win7下,在这不再详细说明,跟安装JDK大同小异,在这个例子中我安装到了E:\hadoop。

启动Eclipse,点击菜单栏的【Windows/窗口】→【Preferences/首选项】→【Hadoop Map/Reduce】,把Hadoop Installation Directory设置成开发机上的Hadoop主目录:

点击OK。

开发环境配置完成,下面我们可以新建一个测试Hadoop项目,右键【NEW/新建】→【Others、其他】,选择Map/Reduce Project

输入项目名称点击【Finish/完成】:

创建完成后可以看到如下目录:

然后在SRC下建立下面包及类:

#p#

以下是代码内容:

TestMapper.java

package com.my.hadoop.mapper;  
    
import java.io.IOException;  
    
import org.apache.commons.logging.Log;  
import org.apache.commons.logging.LogFactory;  
import org.apache.hadoop.io.IntWritable;  
import org.apache.hadoop.io.LongWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.mapred.MapReduceBase;  
import org.apache.hadoop.mapred.Mapper;  
import org.apache.hadoop.mapred.OutputCollector;  
import org.apache.hadoop.mapred.Reporter;  
    
public class TestMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {  
         private static final int MISSING = 9999;  
         private static final Log LOG = LogFactory.getLog(TestMapper.class);  
    
          public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter)  
               throws IOException {  
             String line = value.toString();  
             String year = line.substring(1519);  
             int airTemperature;  
             if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs  
               airTemperature = Integer.parseInt(line.substring(8892));  
             } else {  
               airTemperature = Integer.parseInt(line.substring(8792));  
             }  
             LOG.info("loki:"+airTemperature);  
             String quality = line.substring(9293);  
             LOG.info("loki2:"+quality);  
             if (airTemperature != MISSING && quality.matches("[012459]")) {  
               LOG.info("loki3:"+quality);  
               output.collect(new Text(year), new IntWritable(airTemperature));  
             }  
           }  
    

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.

TestReducer.java

package com.my.hadoop.reducer;  
    
import java.io.IOException;  
import java.util.Iterator;  
    
import org.apache.hadoop.io.IntWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.mapred.MapReduceBase;  
import org.apache.hadoop.mapred.OutputCollector;  
import org.apache.hadoop.mapred.Reporter;  
import org.apache.hadoop.mapred.Reducer;  
    
public class TestReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {  
    
         @Override 
           public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter)  
               throws IOException{  
             int maxValue = Integer.MIN_VALUE;  
             while (values.hasNext()) {  
               maxValue = Math.max(maxValue, values.next().get());  
             }  
             output.collect(key, new IntWritable(maxValue));  
           }  
    

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.

TestHadoop.java

package com.my.hadoop.test.main;  
    
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.io.IntWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.mapred.FileInputFormat;  
import org.apache.hadoop.mapred.FileOutputFormat;  
import org.apache.hadoop.mapred.JobClient;  
import org.apache.hadoop.mapred.JobConf;  
    
import com.my.hadoop.mapper.TestMapper;  
import com.my.hadoop.reducer.TestReducer;  
    
public class TestHadoop {  
           
         public static void main(String[] args) throws Exception{  
                     
                   if (args.length != 2) {  
                         System.err  
                             .println("Usage: MaxTemperature <input path> <output path>");  
                         System.exit(-1);  
                       }  
                   JobConf job = new JobConf(TestHadoop.class);  
             job.setJobName("Max temperature");  
             FileInputFormat.addInputPath(job, new Path(args[0]));  
             FileOutputFormat.setOutputPath(job, new Path(args[1]));  
             job.setMapperClass(TestMapper.class);  
             job.setReducerClass(TestReducer.class);  
             job.setOutputKeyClass(Text.class);  
             job.setOutputValueClass(IntWritable.class);  
             JobClient.runJob(job);  
         }  
           

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.

为了方便对于Hadoop的HDFS文件系统操作,我们可以在Eclipse下面的Map/Reduce Locations窗口与Hadoop建立连接,直接右键新建Hadoop连接即可:

连接配置如下:

然后点击完成即可,新建完成后,我们可以在左侧目录中看到HDFS的文件系统目录:

这里不仅可以显示目录结构,还可以对文件及目录进行删除、新增等操作,非常方便。

当上面的工作都做好之后,就可以把这个项目导出来了(导成jar文件放到Hadoop服务器上运行):

点击完成,然后把这个testt.jar文件上传到Hadoop服务器(192.168.8.184)上,目录(其实可以放到其他目录,你自己喜欢)是:

/usr/mywind/hadoop/share/hadoop/mapreduce  
  • 1.

如下图:

4、运行Hadoop程序及查看运行日志

当上面的工作准备好了之后,我们运行自己写的Hadoop程序很简单:

$ hadoop  jar  /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop   input  output 
  • 1.

注意这是output文件夹名称不能重复哦,假如你执行了一次,在HDFS文件系统下面会自动生成一个output文件夹,第二次运行时,要么把output文件夹先删除($ hdfs dfs -rmr /user/a01513/output),要么把命令中的output改成其他名称如output1、output2等等。

如果看到以下输出结果,证明你的运行成功了:

a01513@hadoop :~$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar                                                                              com.my.hadoop.test.main.TestHadoop input output  
14/09/02 11:14:03 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                             :8032  
14/09/02 11:14:04 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                             :8032  
14/09/02 11:14:04 WARN mapreduce.JobSubmitter: Hadoop command-line option parsin                                                                             g not performed. Implement the Tool interface and execute your application with                                                                              ToolRunner to remedy this.  
14/09/02 11:14:04 INFO mapred.FileInputFormat: Total input paths to process : 1  
14/09/02 11:14:04 INFO mapreduce.JobSubmitter: number of splits:2  
14/09/02 11:14:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_14                                                                             09386620927_0015  
14/09/02 11:14:05 INFO impl.YarnClientImpl: Submitted application application_14                                                                             09386620927_0015  
14/09/02 11:14:05 INFO mapreduce.Job: The url to track the job: http://hadoop:80                                                                             88/proxy/application_1409386620927_0015/  
14/09/02 11:14:05 INFO mapreduce.Job: Running job: job_1409386620927_0015  
14/09/02 11:14:12 INFO mapreduce.Job: Job job_1409386620927_0015 running in uber mode : false  
14/09/02 11:14:12 INFO mapreduce.Job:  map 0% reduce 0%  
14/09/02 11:14:21 INFO mapreduce.Job:  map 100% reduce 0%  
14/09/02 11:14:28 INFO mapreduce.Job:  map 100% reduce 100%  
14/09/02 11:14:28 INFO mapreduce.Job: Job job_1409386620927_0015 completed successfully  
14/09/02 11:14:29 INFO mapreduce.Job: Counters: 49  
        File System Counters  
                FILE: Number of bytes read=105 
                FILE: Number of bytes written=289816 
                FILE: Number of read operations=0 
                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=1638 
                HDFS: Number of bytes written=10 
                HDFS: Number of read operations=9 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=2 
        Job Counters  
                Launched map tasks=2 
                Launched reduce tasks=1 
                Data-local map tasks=2 
                Total time spent by all maps in occupied slots (ms)=14817  
                Total time spent by all reduces in occupied slots (ms)=4500  
                Total time spent by all map tasks (ms)=14817  
                Total time spent by all reduce tasks (ms)=4500  
                Total vcore-seconds taken by all map tasks=14817 
                Total vcore-seconds taken by all reduce tasks=4500 
                Total megabyte-seconds taken by all map tasks=15172608 
                Total megabyte-seconds taken by all reduce tasks=4608000 
        Map-Reduce Framework  
                Map input records=9 
                Map output records=9 
                Map output bytes=81 
                Map output materialized bytes=111 
                Input split bytes=208 
                Combine input records=0 
                Combine output records=0 
                Reduce input groups=1 
                Reduce shuffle bytes=111 
                Reduce input records=9 
                Reduce output records=1 
                Spilled Records=18 
                Shuffled Maps =2 
                Failed Shuffles=0 
                Merged Map outputs=2 
                GC time elapsed (ms)=115  
                CPU time spent (ms)=1990  
                Physical memory (bytes) snapshot=655314944 
                Virtual memory (bytes) snapshot=2480295936 
                Total committed heap usage (bytes)=466616320  
        Shuffle Errors  
                BAD_ID=0 
                CONNECTION=0 
                IO_ERROR=0 
                WRONG_LENGTH=0 
                WRONG_MAP=0 
                WRONG_REDUCE=0 
        File Input Format Counters  
                Bytes Read=1430 
        File Output Format Counters  
                Bytes Written=10 
a01513@hadoop :~$ 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.

我们可以到Eclipse查看输出的结果:

或者用命令行查看:

$ hdfs dfs -cat output/part-00000 
  • 1.

假如你们发现运行后结果是为空的,可能到日志目录查找相应的log.info输出信息,log目录在:/usr/mywind/hadoop/logs/userlogs 下面。

好了,不太喜欢打字,以上就是整个过程了,欢迎大家来学习指正。

原文链接:http://my.oschina.net/lanzp/blog/309078

责任编辑:林师授 来源: loki_lan的博客
相关推荐

2009-06-10 16:30:05

基于Eclipse的PWindows

2013-06-13 10:39:54

Hadoop2.0.4

2017-10-25 18:25:40

Hadoop伪分布式环境部署

2011-09-13 17:15:58

Eclipse And

2013-06-08 14:34:42

Hadoop 2.0

2011-09-14 15:41:05

Android SDK

2015-10-16 13:30:59

EclipsePython开发环境

2012-06-05 01:23:14

Ubuntueclipse

2011-04-02 14:14:19

Android SDKEclipse

2010-08-05 09:13:22

EclipseFlexBuilder

2012-02-28 10:33:27

Eclipse 3.7Android环境

2010-09-25 09:31:27

EclipseAndroid

2011-09-13 18:14:23

Android SDK

2013-07-29 14:23:55

Eclipse开发环境Eclipse开发环境

2012-07-03 08:37:24

Hadoop集群

2010-06-04 15:44:06

Hadoop伪分布

2009-06-10 16:38:24

EclipsePydevDjango

2010-05-12 16:24:32

Black Berry

2010-06-04 17:43:12

Hadoop集群搭建

2011-06-03 15:08:09

IOS 环境搭建
点赞
收藏

51CTO技术栈公众号