当前,系统设备商和移动运营商热烈讨论的一个热门话题之一就是下一代移动网络5G的发展情况。5G已有几个候选技术,未来肯定会有一些概念被定义到这个新标准里。Ovum智能网络***分析师Dimitris Mavrakis在本文里简单介绍下了这几个候选技术,并分析了各项技术的面临的机遇和挑战。
这篇文章的主要内容并非讨论5G技术需要具备哪些要求,而是辨识业界已出现的几个候选技术及相关的架构,包括5G标准可能会向什么方向发展。行业对5G网络的需求是已经确定的,这些已经由5G-PPP(欧洲5G公私合作联盟)概述过。
对于5G的未来,行业的困惑主要有技术、商业机会、在垂直行业的应用以及部署的时间表等等。再加上大多数移动运营商还没有找到更好的货币化LTE网络的方法,所以5G的未来就变得有些迷茫。
如果我们回顾下移动通信技术过去的发展轨迹,隐约描绘出5G大概的样貌。新一代移动网络通常意味着全新的架构,当然传统上还认为架构得是无线接入的:模拟到TDMA(GSM)到CDMA(UMTS)到OFDM(LTE)。显然,5G也需要一个全新的技术、全新标准来解决用户需求。
考虑到流量增长的趋势,5G势必要在网络上进行彻底的变革。软件驱动的架构、极高密度的流体网络、更高频段以及更广泛的频谱范围,满足数十亿的终端设备接入需求,Gbps量级的容量等等,这些都是无法由目前的LTE和LTE-Advanced网络提供的。
显然,我们需要一个全新的空中接口,对于这一点,中兴通讯走得更远一点,他们提出5G网络将容许多个空中接口标准共存,从理论角度看,这确实是理想的(OFDM技术不适用于small cell和异构网络,但其他的接口可以)。但是从运营和经济角度考虑,这就意味着会耗费大量精力和开发成本。
当然,结合现有的网络技术发展以及用户需求,只能猜测未来5G技术大概的样貌。现在成本问题还没有上升到5G技术话题的讨论范围内,所以5G候选技术的可讨论范围就大很多。本文同样如此,先撇开成本考虑,简单介绍几个对现有网络有彻底破坏性变革的技术。
5G候选技术如下:
****增密
网络增密不是新技术,在3G网络刚一开始遇到拥堵问题时,移动运营商就意识到需要在系统或多个扇区引入新的蜂窝(cell),这带动了small cell等多种类似产品的兴起,这一技术本质上是把接入点移到离用户更近的地方。简单来说,基本上是没有其他方式来大幅增加整个系统或整个网络的容量。
5G网络很可能是由多层连接组成,也就是说不同大小、类型小区构成的异构网络:对数据连接速率要求低的区域用宏站层覆盖,对传输速率要求高的区域用颗粒层覆盖,中间再穿插其他的网络层。网络部署和协调是主要的挑战,因为运营商需要以指数级增长网络层。
*多网协同
未来会有多张网络一起为用户终端提供连接:移动蜂窝、WiFi、终端对终端连接等等。5G系统应该能紧密协调这些网络,为用户提供不中断的顺畅体验。目前,协同多张网络仍然是一个相当大的挑战。Hotspot 2.0与下一代Hotspot的案例会是蜂窝与WiFi集成的一个参考。5G能否让终端设备在几张网络间顺利切换,还有待观察,如何无缝地从一张网络切到另一张上的确是一个***的挑战。
*全双工
所有现有的移动通信网络都依赖双工模式来管理上传和下载,有时分双工,有频分双工,比如说LTE FDD,其上行和下行需要两个单独的信道,而TDD呢,无论上行还是下行都采用同一个信道,只是时隙不同。
要想协调好上下行,双工模式肯定是必不可少的,但全双工技术现在仍在讨论中。如果采用这个技术方案,终端设备可同时发送和接收信息,这就有可能使现有的FDD和TDD系统容量翻番。
当然这项技术也存在巨大的挑战:需要从根本消除自干扰,网络和设备都需要巨大变化。如果克服这些挑战,整个网络容量将实现巨大增幅。
*毫米波
现在,450MHz–2.6GHz的低频段频谱几乎已全部用于移动通信了,好在仍然有很多高频段频谱可用,这部分频谱有的高达300GHz。自然,相比运营商熟悉的低频段频谱,如何应用好这些高频段频谱,所面临的技术挑战也复杂很多,比如说频段越高,建筑物穿透就越困难,只是一面简单的墙就能成为毫米波信号的穿透障碍。
不过,还有一些高频段的GHz频谱已有占用:短距离、点对点、可视范围连接等等,它们用来为无线连接提供了更高的速率。
毫米波可以用于室内small cell(这也符合以上提到的网络增密),为一些密集区域提供高速连接。毫米波的高频段特性意味着天线会非常的小,它对设备影响的范围也相当小。然而,Ovum认为,毫米波是一项超前的技术,可能需要很多年的研发,才能使其具备成本效益能大规模投向市场。
需要注意的是,毫米波技术的发展也不是***的,2009年成立的WiGig联盟旨在建立全球千兆级高速无缝传输的产业链,关注重点是60GHz频段,这个联盟汇聚了无线领域几乎所有的行业巨头;2014年6月,谷歌收购了由两位Clearwire前工程师创办的企业Alpental,这家公司致力于发展自组织、超低功耗、毫米波千兆无线技术,主要是60GHz频段。
*大规模阵列天线
LTE-Advanced网络已经采用了MIMO技术,相比单一天线,MIMO能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。大规模阵列天线MIMO技术是MIMO技术的扩展和延伸,其基本特征就是在基站侧配置大规模的天线阵列(从几十至几千),利用空分多址(SDMA)原理,同时服务多个用户。这一技术为网络容量提升带来的益处是非常大的,当然也存在巨大挑战。不过市场普遍对这一技术很感兴趣,一家名为Artemis的初创公司,就在开发基于大规模阵列天线的pCells新型无线技术,非常适合用在高密度的用户地区。
*虚拟化、软件控制以及云架构
向5G演进的并行趋势还有软件和云,届时网络是由分布式数据中心驱动的,由后者提供敏捷性、集中控制以及软件升级。像SDN、NFV、云以及开放生态系统都有可能是5G的基础技术,当然行业也在继续讨论如何利用这些技术和体系架构的优势。尽管这些也不是新技术,但仍有可能在5G时代得到大规模应用,因为在为数十亿上百亿个设备提供连接时,网络需要利用这些技术来提升性能。
考虑到现有的技术和需求,以上提到的所有技术都有很大的潜力应用在5G网络中。Mavrakis认为,***选定哪些技术可能需要一个相当长的比较过程,哪些技术能胜出取决于:性能、部署、成本、政策等多项因素。不过做这样一个假设应当是合理的:成本***的技术有***的胜算可能,这和LTE-Advanced的发展情况是类似的。