这一切的背后,需要一套完整的「科学」逻辑框架,让你了解自己手中的工具的本质,你才能从数据中「正确地」发现有效的信息,而不是胡乱地使用一大堆自己都搞不清楚的工具来堆砌分析结果,这样得到分析结果不仅无用,而且有害。
知道了这些后,希望成长为「数据分析师」,就需要着手训练自己的能力和洞察力。既然是「数据分析师」,那就分别从「数据」和「分析」两方面入手。
「数据」当然包含了数据收集、处理、可视化等内容,每个环节对于***的结果都有关键性的影响。其中涉及的技术性内容只是一部分而已,更重要的是你要理解数据收集(是否存在采样偏差?如何纠正或者改进?)、处理(是否有漏洞或异常情况没有考虑?)背后的逻辑。
例如:如果分析股票数据用于设计交易策略,那么你不仅需要明白数据处理本身的问题,还要清楚金融市场的基本知识。例如,使用股票价格时,到底要用收盘价,还是复权价;复权价的话要用前复权价还是后复权价。这些选择与数据分析没有太大的关系,纯粹决定于你分析的目的是什么。因此你要充分了解这些概念背后的逻辑、动机是什么,才能正确地根据自己的目的作出选择。
数据可视化更多的是一门艺术:如何把信息以最恰当的方式呈现给希望获得这些信息的人。首先,你要充分理解这些信息究竟是什么,有什么特点,你才能较为恰当的选择采用的可视化工具。
另外一部分就是「分析」。当然就是各种分析模型,还是需要了解这些模型背后的逻辑,要放到整个项目的上下文中去看,而不是单纯地在模型中看。
总而言之,「理解」数据以及其中的信息是非常重要的,这决定了你的分析和呈现的方法是否合适,决定了***的结论是否可靠。
现在可以回答题主的问题了:成长为一个数据分析师,要注意「理解」你的知识,形成一个系统,而不是像机器人一样机械地胡乱套用模型。在这个理念下训练你的编程能力,了解你所分析对象的原理和尽可能多的细节。在这个基础上,才能谈数据分析。