零售业大数据分析那些事儿

数据库
随着大数据时代的到来,数据分析已经成为了零售业非常重要的一环,也是精细化运营的基础。

 [[109758]]

零售业数据分析包括:

  • 财务分析

  • 销售分析

  • 商品分析

  • 顾客分析

  • 供应商分析

  • 人员分析

本文将对这6个方面逐一解读。

1 财务分析

1)分析企业的财务状况,了解企业资产的流动性、现金流量、负债水平及企业偿还长短期债务的能力,从而评价企业的财务状况和风险;

2)分析企业的资产管理水平,了解企业对资产的管理状况,资金周转情况;

3)分析企业的获利能力;

4)分析企业的发展趋势,预测企业的经营前景;

同时,系统还应该按照部门、人员、商品、供应商、时间等各个维度综合分析各项财务指标,如:成本、毛利、利润、库存、结算、盈亏平衡点、销售数量、销售金额、市场占有率等等。

2 销售分析

主要分析各项销售指标,例如毛利、毛利率、坪效(坪效是台湾经常拿来计算商场经营效益的指标, 指的是每坪的面积可以产出多少营业额(营业额÷专柜所占总坪数,以百货公司为例, 店里不同的位置, 所吸引的客户数也不同。一楼入口处, 通常是最容易吸引目光的地方, 在这样的黄金地段一定要放置能赚取***利润的专柜, 所以你会发现百货公司的一楼通常都是化妆品专柜)、交叉比、销进比、盈利能力、周转率、同比、环比等等;

而分析维度又可从管理架构、类别品牌、日期、时段等角度观察,这些分析维又采用多级钻取,从而获得相当透彻的分析思路;

同时根据海量数据产生预测信息、报警信息等分析数据;

还可根据各种销售指标产生新的透视表,例如最常见的ABC分类表、商品敏感分类表、商品盈利分类表等。

这些复杂的指标在原来的数据库中是难以实现的,老总们虽然知道他们非常有用,但由于无法得到,使得这些指标的地位也若有若无。直到BI技术出现之后,这些指标才重新得到了管理者和分析者们的宠幸。

3 商品分析

商品分析的主要数据来自销售数据和商品基础数据,从而产生以分析结构为主线的分析思路。主要分析数据有商品的类别结构、品牌结构、价格结构、毛利结构、结算方式结构、产地结构等,从而产生商品广度、商品深度、商品淘汰率、商品引进率、商品置换率、重点商品、畅销商品、滞销商品、季节商品等多种指标。通过对这些指标的分析来指导企业商品结构的调整,加强所营商品的竞争能力和合理配置。

4 顾客分析

顾客分析主要是指对顾客群体的购买行为的分析。例如,如果将顾客简单地分成富人和穷人,那么什么人是富人,什么人是穷人呢?实行会员卡制的企业可以通过会员登记的月收入来区分,没有推行会员卡的,可通过小票每单金额来假设。比如大于100元的我们认为是富人,小于100元的我们认为是穷人。好了,现在老总需要知道很多事情了,比如,富人和穷人各喜欢什么样的商品;富人和穷人的购物时间各是什么时候;自己的商圈里是富人多还是穷人多;富人给商场作出的贡献大还是穷人作出的贡献大;富人和穷人各喜欢用什么方式来支付等等。此外还有商圈的客单量、购物高峰时间和假日经济对企业影响等分析。

5 供应商分析

通过对供应商在特定时间段内的各项指标,包括订货量、订货额、进货量、进货额、到货时间、库存量、库存额、退换量、退换额、销售量、销售额、所供商品毛利率、周转率、交叉比率等进行分析,为供应商的引进、储备、淘汰(或淘汰其部分品种)及供应商库存商品的处理提供依据。主要分析的主题有供应商的组成结构、送货情况、结款情况,以及所供商品情况,如销售贡献、利润贡献等。通过分析,我们可能会发现有些供应商所提供的商品销售一直不错,它在某个时间段里的结款也非常稳定,而这个供应商的结算方式是代销。好了,分析显示出,这个供应商所供商品销售风险较小,如果资金不紧张,为什么不考虑将他们改为购销呢?这样可以降低成本呵。

6 人员分析

通过对公司的人员指标进行分析,特别是对销售人员指标(销售指标为主,毛利指标为辅)和采购员指标(销售额、毛利、供应商更换、购销商品数、代销商品数、资金占用、资金周转等)的分析,以达到考核员工业绩,提高员工积极性,为人力资源的合理利用提供科学依据的目的。主要分析主题有,员工的人员构成、销售人员的人均销售额、对于开单销售的个人销售业绩、各管理架构的人均销售额、毛利贡献、采购人员分管商品的进货多少、购销代销的比例、引进的商品销量如何等等。

原文链接:http://www.36dsj.com/archives/6748

责任编辑:彭凡 来源: 36大数据
相关推荐

2017-08-31 10:30:49

数据分析零售业消费者

2013-12-26 10:04:13

大数据

2017-02-09 14:31:54

Hadoop零售业大数据

2013-10-25 17:27:53

SAP

2014-02-19 16:28:39

零售业趋势联网商店

2017-10-16 12:37:55

2018-06-05 11:20:33

大数据人工智能零售

2018-04-12 16:47:54

新零售

2013-06-14 09:46:58

创新大数据管理

2013-01-17 18:24:28

惠普零售解决方案

2017-02-27 16:47:52

零售业大数据

2015-06-01 13:42:25

思科

2022-06-13 06:23:18

物联网零售业

2023-10-30 15:01:00

2018-06-11 17:24:21

数据分析大数据零售

2012-12-25 09:34:03

数据分析大数据

2020-06-15 07:58:21

人工智能技术零售业

2022-01-23 16:04:47

区块链加密货币金融

2023-06-06 11:07:59

大数据人工智能零售

2022-06-09 14:54:21

物联网人工智能
点赞
收藏

51CTO技术栈公众号