2014最值得学习的语言—必须是R

原创
开发 前端
NODE,LUA,Python,Ruby,R ,哪个在2014年的应用前景会更好?小编为此特别约稿了粉丝日志创始人张丹。张丹毫不犹豫的选择R。这也是意料之中的事。R不仅是2014年,也是以后更长一段时间的主角。

前言

以下5种语言 NODE、LUA、Python、Ruby、R ,哪个在2014年的应用前景会更好?

我毫不犹豫的选择R。R不仅是2014年,也是以后更长一段时间的主角。

目录

  1. 我的编程背景
  2. 为什么我会选择R?
  3. R的应用前景
  4. 时代赋予R的任务
  5. 作者介绍

1. 我的编程背景

本人程序员、架构师,从编程入门到今天,一直深信着Java是改变世界的语言,Java已经做到了,而且一直很辉煌。但当Java的世界越来越大,变得无所不能的时候,反而不够专业,给了其他语言发展的机会。

本次要比较要5种编程语言(NODE,LUA,Python,Ruby,R),这些都是非常优秀的,在特定领域发展壮大的语言。

我已使用Java语言 11年,R语言 3年,Node 1年,对于本次问题 “哪个语言在2014年的应用前景会更好?”,我选择R语言。

2. 为什么我会选择R?

我会从下面的几个方面,来说明我选择R的原因。

  • R的基因
  • R的发展
  • R的社区和资源
  • R的哲学
  • R的使用者
  • R的语法
  • R的思维模式
  • R解决的问题
  • R的不足

1). R的基因

R是统计学家发明的语言,天生具有统计的基因。

从我开始学习R语言,我就开始了知识的跨界思考。统计基于概率论,概率论又基于数学,用计算机的方式编程,解决某个领域的实际问题。简单一算,4个学科知识的交集,决定着我们解决问题的能力。统计的基因,让R语言与众不同!

2). R的发展

R一直在小众领域成长着,最早也只有统计学家在用,主要用R来代替SAS做统计计算。时代在进步,随着大数据的爆发,R终于在这一波浪潮中,被工业 界所发现。然后,有越来越多的工程背景的人加入到这个圈子,对R计算引擎,R的性能,R的各种程序包进行改进和升级,让R获得了新生。

我们现在用到的R语言软件,已经越来越接近工业软件的标准了。由工程师推动的R的发展速度,远远地超过了由统计学家推动的步伐。随着人们对数据分析要求的进一步增加,R会以更快的脚步继续发展,将成为免费的、开源的、数据分析软件的代名词。

3). R的社区和资源

R的发展,离不开R的社区支持。当然,我不得不承认R的官方社区,从Web页上看起来太简陋了,稍微调整一下CSS样式表,都会比现在好看很多。也许这种简单、无修饰也是统计学家的基因吧。

在R的社区中,我们可以下载到R语言软件,R的第三方软件包,和R的其他支持软件。可以找到开发者论坛,R-Journal列表,软件包列表,R语言图书列表,R用户组等的信息,同其他语言的社区资源一样丰富。

R是自由软件,开发者可以开发自己的软件包,封装自己的功能,然后在CRAN上面发布。截止到2014年2月,共有5236个R包在CRAN上面发布。

可能很多人会说只有5236个包,数量太少了。这是因为CRAN是需要提交申请的,R语言小组审核,检查后再会发布的出来。而且审核非常严格的,高 质量是发布一个新的R包基本要求。由于CRAN过于严格的审查,让很多的开发者选择在RForge上发布,还有些R包是基于Github发布的,我也在 github上面发布了自己的R包:https://github.com/bsspirit/chinaWeather。

#p#

4). R的哲学

每种语言都有自己的设计理念和哲学,而我体会的R的哲学,就是“静下心做事情”。

R不需要很长的代码,R也不需要设计模式。一个函数调用,传几个参数,就能实现一个复杂的统计模型。我们需要思考,用什么模型,传什么参数,而不是怎么进行程序设计。

我们可能会用R实现 “从一个数学公式,变成一个统计模型” 的过程,我们也可能会考虑 “如何让一个分类器结果更准确”,但我们不会思考 “时间复杂度是多少,空间复杂度是多少”。

R的哲学,可以让你把数学和统计学的知识,变成计算模型,这也是R的基因所决定的。

5). R的使用者

R语言早期主要是学术界统计学家在用,在各种不同的领域,包括统计分析,应用数学,计量经济,金融分析,财经分析,人文科学,数据挖掘,人工智能,生物信息学,生物制药,全球地理科学,数据可视化等等。

近些年来,由互联网引发的大数据革命,才让工业界的人,开始认识R,加入R。当越来越多的有工程背景的人,加入到R语言使用者的队伍后,R才开始像着全领域发展,逐步实现工业化的要求。

  • RevolutionAnalytics公司的RHadoop产品,让R可以直接调用Hadoop集群资源
  • RStudio公司的RStudio产品,给了我们对于编辑软件新的认识
  • RMySQL, ROracle, RJDBC 打通了R和数据库访问通道
  • rmongodb, rredis, RHive, rhbase, RCassandra 打通过R和NoSQL的访问通道
  • Rmpi, snow 打通了单机多核并行计算的通道
  • Rserve,rwebsocket 打通了R语言的跨平台通信的通道
  • R不仅是学术界的语言,更将成为工业界必备的语言。

6). R的语法

R是面向对象语言,语法如同Python。但R的语法很自由,很多函数的名字,看起来都是那么随意,这也是R的哲学的一部分吧!

看到这样的赋值语法,有其他语言基础的程序员,肯定会崩溃的。

  1. > a<-c(1,2,3,4)->
  2. > a 
  3. [1] 1 2 3 4 
  4. > b 
  5. [1] 1 2 3 4 

随机取正态分布N(0,1)的10个数,又是这么的简单。

  1. > rnorm(10) 
  2.  [1] -0.694541401  1.877780959 -0.178608091  0.004362026 
  3.  [5]  0.836891967  1.794961298  0.115284187  0.155175219 
  4.  [9]  0.464028612 -0.842569561 

用R画鸢尾花的数据集的散点图,非常好的可视化效果

  1. > data(iris) #加载数据集 
  2. > head(iris) #查看前6行数据集 
  3.   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
  4. 1          5.1         3.5          1.4         0.2  setosa 
  5. 2          4.9         3.0          1.4         0.2  setosa 
  6. 3          4.7         3.2          1.3         0.2  setosa 
  7. 4          4.6         3.1          1.5         0.2  setosa 
  8. 5          5.0         3.6          1.4         0.2  setosa 
  9. 6          5.4         3.9          1.7         0.4  setosa 
  10.  
  11. > plot(iris) #画图 

用R画鸢尾花的数据集的散点图

正是因为R自由哲学,让R的语法独特而简洁,我已经喜欢上这种哲学了。

7). R的思维模式

R语言让我跳出了原有思维定式。使用R语言,我们应该从统计学的角度想问题,而不是计算机的思维模式。

R语言是直接面向数据的语言。在我们的日常生活中,无论做什么事情都会产生数据,上网有浏览数据,买东西有消费数据,就算什么都不干,也会受大气PM2.5的影响。利用R语言,我可以直接分析这些数据。

面向什么业务,就分析什么数据,不需要从产品经理向程序员的角色转换,不需要考虑有什么功能,更不需要考虑程序设计的事。

跳出程序员的思维模式,你所能认知的东西会更多,找到更适合自己的定位。

#p#

8). R解决的问题

当数据成为生产资料的时候,R就是为人们能运用生产资料创造价值的生产工具,R语言主要解决的是数据的问题。

在很长期的历史时期,人类产生的数据都没有自互联网诞生以来产生的数据多;当Hadoop帮助人们解决了大数据存储的问题后,如何发现数据的价值,成为当前最火的话题。R语言的统计分析能力,就是数据分析最好的工具。

所以,R要解决的问题,就是大数据时代的问题,是时代赋予的任务。

9). R的不足

前面说了太多R的优点了,R也有很多不足之处。

  • R语言是统计学家编写的软件,并不如软件工程师编写的软件那么健壮。
  • R语言软件的性能,存在一些问题。
  • R语言很自由,语法命名不太规范,需要花时间熟悉。
  • R语言结合了很多数学、概率、统计的基础知识,学起来有一定门槛。

R的这些不足,都是可以克服的。当有更多的工程背景的人加入的时候,R语言会比现在更强大,帮助使用者创造更多的价值。

3. R的应用前景

R可以做所有SAS做的事情。

R应用最热门的领域:

  • 统计分析:包括统计分布,假设检验,统计建模
  • 金融分析:量化策略,投资组合,风险控制,时间序列,波动率
  • 数据挖掘:数据挖掘算法,数据建模,机器学习
  • 互联网:推荐系统,消费预测,社交网络
  • 生物信息学:DNA分析,物种分析
  • 生物制药:生存分析,制药过程管理
  • 全球地理科学:天气,气候,遥感数据
  • 数据可视化:静态图,可交互的动态图,社交图,地图,热图,与各种Javascript库的集成

我在博客中已经写了很多篇关于R语言应用的文章,包括上面所列出的除生物以外的热门领域。R有着非常广阔的应用前景,而且R也将成为新一代的最有能力创造价值的工具。

4. 时代赋予R的任务

R语言是在大数据时代被工业界了解和认识的语言,R语言被时代赋予了,挖掘数据价值,发现数据规律,创造数据财富的任务。

R语言也是帮助人们发挥智慧和创造力的最好的生产工具,我们不仅要学好R语言,还要用好R语言,为社会注入更多的创新的生产力。

所以,通过上面的几节内容所有的文字描述,我认为“R是最值得学习的编程语言”。不论你还在读书,还是已经工作,掌握R语言这个工具,找最适合自己的位置,前途将无限量。

最后总结:在这5种语言中,R是最特殊的,R被赋予了与其他语言不同的使命。R的基因决定了,R将成为2014年,也可能是以后更长一段时间的主角。

5. 作者介绍

张丹,程序员、架构师,创业者。我的博客: http://blog.fens.me

从程序员开始,到架构师一路走来,经历过太多的系统和应用。做过手机游戏,写过编程工具;做过大型Web应用系统,写过公司内部CRM;做过SOA 的系统集成,写过基于Hadoop的大数据工具;做过外包,做过电商,做过团购,做过支付,做过SNS,也做过移动SNS。以前只用Java,然后学了 PHP,现在用R和Node。最后跳出IT圈,进入金融圈,研发量化交易软件。

注:我正在写一本关于R语言的图书,本篇文章会作为图书的开篇文章。

[[109300]]

责任编辑:陈四芳 来源: 51CTO
相关推荐

2014-03-04 16:34:00

IT技术周刊

2018-01-10 08:45:57

编程语言PythonKotlin

2014-02-04 19:44:23

编程语言开发

2019-01-09 06:03:15

编程语言开发Python

2023-07-12 08:00:00

编程语言开发

2011-03-23 10:50:21

LAMPWeb开发

2018-02-26 18:54:37

2009-10-30 09:37:27

Windows Ser

2014-03-26 09:13:37

2017-08-08 10:55:03

大数据R语言数据分析

2019-01-30 12:38:41

JavaScript前端编程语言

2014-10-23 08:56:42

开源项目C

2014-11-26 11:12:53

编程语言

2016-11-11 14:12:19

R语言

2020-03-01 17:35:53

编程语言大数据程序员

2021-03-01 12:20:32

编程语言LinuxPython

2021-04-19 11:39:04

编程语言PythonJava

2021-03-01 09:32:54

编程语言开发

2017-07-05 14:42:13

2017-04-05 18:10:05

R语言开发Ross
点赞
收藏

51CTO技术栈公众号