hadoop1.2.1+zookeeper-3.4.5+hbase-0.94.1集群安装

云计算 Hadoop
集群中包括3个节点:hadoop01为Master,其余为Salve,节点之间局域网连接,可以相互ping通。

一,环境:

1,主机规划:

集群中包括3个节点:hadoop01Master其余为Salve,节点之间局域网连接,可以相互ping通。

机器名称

IP地址

hadoop01

192.168.1.31

hadoop02

192.168.1.32

hadoop03

192.168.1.33

三个节点上均是CentOS6.3 x86_64系统,并且有一个相同的用户hadoophadoop01做为master配置NameNodeJobTracker的角色,负责总管分布式数据和分解任务的执行;另外两台配置DataNodeTaskTracker的角色,负责分布式数据存储以及任务的执行。安装目录统一为/usr/local

2,软件版本:

hadoop-1.2.1.tar.gzjdk-7u25-linux-x64.rpm

二,准备工作,三台机器都需要做 ,将三台机器selinuxiptables停用。

1,安装jdk

[root@hadoop01 ~]# rpm -ivh jdk-7u25-linux-x64.rpm

[root@hadoop01 ~]# cd /usr/java/

[root@hadoop01 java]# ls

default  jdk1.7.0_25  latest

[root@hadoop01 java]# ln -s jdk1.7.0_25 jdk

[root@hadoop01 java]# vim /etc/profile

220309861.png

[root@hadoop01 java]# source /etc/profile  让其java命令立即生效

[root@hadoop01 java]# java   执行java命令,如果能正常执行就表示java安装完成

2,添加一个hadoop用户,用来运行hadoop集群

220338552.png

3,做三台机器之间做双机互信,原因master通过远程启动datanode进程和tasktracker进程,如果不做双机互信,会导致每次启动集群服务都会需要密码

[root@hadoop01 ~]# vim /etc/hosts

220402614.png

hosts文件分别复制到另外两台。

4,切换到hadoop用户,对其用做双机互信,先在三台机器先执行ssh-keygen生成公钥与私钥。

220423279.png

将公钥复制到别的机器,需要对hadoop01hadoop03,都做相同的动作。

[hadoop@hadoop02 ~]$ ssh-copy-id -i hadoop01

[hadoop@hadoop03 ~]$ ssh-copy-id -i hadoop01

5,同步时间,三台机器启用ntpd服务,另外两台执行相同的操作

[root@hadoop01 ~]# crontab -e

*/5 * * * * /usr/sbin/ntpdate ntp.api.bz &> /dev/null

三,配置master,也就hadoop01

[root@hadoop01 ~]# tar xf hadoop-1.2.1.tar.gz  -C /usr/local/

[root@hadoop01 ~]# chown -R hadoop:hadoop /usr/local/hadoop-1.2.1

[root@hadoop01 ~]su - hadoop

[hadoop@hadoop01 ~]$ cd /usr/local/hadoop-1.2.1/

(1)Hadoop的配置文件都存储在conf下,配置文件解释

hadoop-env.sh:用于定义hadoop运行环境相关的配置信息,比如配置JAVA_HOME环境变量、为hadoopJVM指定特定的选项、指定日志文件所在的目录路径以及masterslave文件的位置等;

core-site.xml: 用于定义系统级别的参数,它作用于全部进程及客户端HDFS URLHadoop的临时目录以及用于rack-aware集群中的配置文件的配置等,此中的参数定义会覆盖core-default.xml文件中的默认配置;

hdfs-site.xmlHDFS的相关设定,如文件副本的个数、块大小及是否使用强制权限等,此中的参数定义会覆盖hdfs-default.xml文件中的默认配置;

mapred-site.xmlmapreduce的相关设定,如reduce任务的默认个数、任务所能够使用内存的默认上下限等,此中的参数定义会覆盖mapred-default.xml文件中的默认配置;

masters: hadoopsecondary-masters主机列表,当启动Hadoop时,其会在当前主机上启动NameNodeJobTracker,然后通过SSH连接此文件中的主机以作为备用NameNode;

slavesHadoop集群的slave(datanode)tasktracker的主机列表master启动时会通过SSH连接至此列表中的所有主机并为其启动DataNodetaskTracker进程;

Hadoop-metrics2.properties:控制metricshadoop上如何发布属性

Log4j.properties:系统日志文件、namenode审计日志、tarsktracker子进程的任务日志属性

(2)修改hadoop-env.sh

[hadoop@hadoop01 hadoop-1.2.1]$ vim conf/hadoop-env.sh

220501797.png

(3)修改core-site.xml

[hadoop@hadoop01 hadoop-1.2.1]$ vim conf/core-site.xml

<configuration>

<property>

       <name>hadoop.tmp.dir</name>

       <value>/data/hadoop/tmp</value>

</property>

<property>

       <name>fs.default.name</name>

       <value>hdfs://hadoop01:9000</value>

</property>

</configuration>

 

hadoop.tmp.dir属性用于定义Hadoop的临时目录,其默认为/tmp/hadoop-${username}HDFS进程的许多目录默认都在此目录中,/hadoop/tmp目录,需要注意的是,要保证运行Hadoop进程的用户对其具有全部访问权限。

fs.default.name属性用于定义HDFS的名称节点和其默认的文件系统,其值是一个URI,即NameNodeRPC服务器监听的地址(可以是主机名)和端口(默认为8020)。其默认值为file:///,即本地文件系统。

(4)修改hdfs-site.xml文件

[hadoop@hadoop01 hadoop-1.2.1]$ vim conf/hdfs-site.xml

 

<configuration>

       <property>

               <name>dfs.data.dir</name>

                <value>/data/hadoop/data</value>

        </property>

        <property>

               <name>dfs.replication</name>

               <value>2</value>

        </property>

</configuration>

 

dfs.name.dir属性定义的HDFS元数据持久存储路径,默认为${hadoop.tmp.dir}/dfs/name

dfs.replication属性定义保存副本的数量,默认是保存3份,由于这里只有两台slave。所以设置2。

(5)修改mapred-site.xml文件

[hadoop@hadoop01 hadoop-1.2.1]$ vim conf/mapred-site.xml

<configuration>

       <property>

               <name>mapred.job.tracker</name>

               <value>http://hadoop01:9001</value>

        </property>

</configuration>

(6)编辑masters文件

masters用于指定辅助名称节点(SecondaryNameNode)的主机名或主机地址

[hadoop@hadoop01 hadoop-1.2.1]$ vim conf/masters

hadoop01

(7)编辑slaves文件,这个文件只需在master主机上编辑就行

用于指定各从服务器(TaskTrackerDataNode)的主机名或主机地址

hadoop02

hadoop03

在三台机器上分别创建两个目录:

[root@hadoop01 local]# mkdir -p /hadoop/data

[root@hadoop01 local]# mkdir -p /hadoop/tmp

[root@hadoop01 local]# chown -R hadoop:hadoop /hadoop/

[root@hadoop02 local]# mkdir -p /hadoop/data

[root@hadoop02 local]# mkdir -p /hadoop/tmp

[root@hadoop0local]# chown -R hadoop:hadoop /hadoop/

[root@hadoop03 local]# mkdir -p /hadoop/data

[root@hadoop03 local]# mkdir -p /hadoop/tmp

[root@hadoop03 local]# chown -R hadoop:hadoop /hadoop/

(8)配置slave:将配置的hadoop整个目录复制到hadoop02haoop03

[root@hadoop01 ~]# scp -rp /usr/local/hadoop-1.2.1 hadoop02:/usr/local/

[root@hadoop01 ~]# scp -rp /usr/local/hadoop-1.2.1 hadoop03:/usr/local/

修改权限:

[root@hadoop02 ~]# chown  -R hadoop:hadoop /usr/local/hadoop-1.2.1/

[root@hadoop03 ~]# chown  -R hadoop:hadoop /usr/local/hadoop-1.2.1/

 

四,启动集群:

1、格式化名称节点

与普通文件系统一样,HDFS文件系统必须要先格式化,创建元数据数据结构以后才能使用。

[hadoop@hadoop01 hadoop-1.2.1]$ bin/hadoop namenode -format

220708790.png

如果格式化出错,一般会提示错误,就像下面,已经在提示哪个文件,第几行,根据提示检查即可。

220725712.png

[hadoop@hadoop01 ~]$ bin/start-all.sh

220739648.png

[hadoop@hadoop01 ~]$ jps  查看进程是否起来。secondarynamenodenomenodejobtracker三个进程必须都有,才正常。

8549 SecondaryNameNode

8409 NameNode

8611 JobTracker

8986 Jps

或者这种方式查看集群是否正常

[hadoop@hadoop01 hadoop-1.2.1]$ bin/hadoop dfsadmin -report

Safe mode is ON

Configured Capacity: 37073182720 (34.53 GB)

Present Capacity: 32421658624 (30.2 GB)

DFS Remaining: 32421576704 (30.19 GB)

DFS Used: 81920 (80 KB)

DFS Used%: 0%

Under replicated blocks: 0

Blocks with corrupt replicas: 0

Missing blocks: 0

-------------------------------------------------

Datanodes available: 2 (2 total, 0 dead)

 

Name: 192.168.0.33:50010

Decommission Status : Normal

Configured Capacity: 18536591360 (17.26 GB)

DFS Used: 40960 (40 KB)

Non DFS Used: 2325061632 (2.17 GB)

DFS Remaining: 16211488768(15.1 GB)

DFS Used%: 0%

DFS Remaining%: 87.46%

Last contact: Sat Aug 31 22:25:13 CST 2013

 

Name: 192.168.0.32:50010

Decommission Status : Normal

Configured Capacity: 18536591360 (17.26 GB)

DFS Used: 40960 (40 KB)

Non DFS Used: 2326462464 (2.17 GB)

DFS Remaining: 16210087936(15.1 GB)

DFS Used%: 0%

DFS Remaining%: 87.45%

Last contact: Sat Aug 31 22:25:12 CST 2013

测试集群:

[hadoop@hadoop01 hadoop-1.2.1]$ bin/hadoop jar hadoop-test-1.2.1.jar  DFSCIOTest -write -nrFiles 10 -filesize 1000

[hadoop@hadoop01 hadoop-1.2.1]$ bin/hadoop jar hadoop-test-1.2.1.jar  DFSCIOTest -read -nrFiles 10 -filesize 1000

hadoop默认监听的端口:

Hadoop进程监听的地址和端口

Hadoop启动时会运行两个服务器进程,一个为用于Hadoop各进程之间进行通信的RPC服务器,另一个是提供了便于管理员查看Hadoop集群各进程相关信息页面的HTTP服务器。

 

用于定义各RPC服务器所监听的地址和端口的属性有如下几个:

fs.default.name:定义HDFSNameNode用于提供URI所监听的地址和端口,默认端口为8020

dfs.datanode.ipc.addressDataNodeRPC服务器监听的地址和端口,默认为0.0.0.0:50020

mapred.job.trackerJobTrackerPRC服务器所监听的地址和端口,默认端口为8021

mapred.task.tracker.report.addressTaskTrackerRPC服务器监听的地址和端口;TaskTracker的子JVM使用此端口与TaskTracker进行通信,它仅需要监听在本地回环地址127.0.0.1上,因此可以使用任何端口;只有在当本地没有回环接口时才需要修改此属性的值;

除了RPC服务器之外,DataNode还会运行一个TCP/IP服务器用于数据块传输,其监听的地址和端口可以通过dfs.datanode.address属性进行定义,默认为0.0.0.0:50010

 

可用于定义各HTTP服务器的属性有如下几个:

dfs.http.addressNameNodeHTTP服务器地址和端口,默认为0.0.0.0:50070

dfs.secondary.http.addressSecondaryNameNodeHTTP服务器地址和端口,默认为0.0.0.0:50090

mapred.job.tracker.http.addrssJobTrackerHTTP服务器地址和端口,默认为0.0.0.0:50030

dfs.datanode.http.addressDataNodeHTTP服务器地址和端口,默认为0.0.0.0:50075

mapred.task.tracker.http.addressTaskTrackerHTTP服务器地址和端口,默认为0.0.0.0:50060上述的HTTP服务器均可以通过浏览器直接访问以获取对应进程的相关信息,访问路径为http://Server_IP:Port。如namenode的相关信息:

220758157.png

 

四,排错思路

1,是否是hadoop.tmp.dirdfs.data.dir属性,如果定义在别的目录需要在集群中所有节点都创建,并让hadoop用户能够访问

2,查看进程对应的端口是否有在监听。在上面配置中将namenode的端口定义9000jobtracker定义成9001

[hadoop@hadoop01 hadoop-1.2.1]$ netstat -tunlp |grep 9000

tcp        0      0 ::ffff:192.168.0.31:9000    :::*                        LISTEN      22709/java          

[hadoop@hadoop01 hadoop-1.2.1]$ netstat -tunlp |grep 9001

tcp        0      0 ::ffff:192.168.0.31:9001    :::*                        LISTEN      22924/java  

3,查看日志,哪个服务没起来就查看对应的日志。

4,查看集群中所有节点的时间是不是一致。

5iptableselinux是否阻止。

6/etc/hosts是否正确。

五,添加节点,删除节点

添加节点
1.修改host 
 和普通的datanode一样。添加namenodeip 
2.修改namenode的配置文件conf/slaves 
 添加新增节点的iphost 
3.在新节点的机器上,启动服务

[hadoop@hadoop04 hadoop]# ./bin/hadoop-daemon.sh start datanode
[hadoop@hadoop04 hadoop]# ./bin/hadoop-daemon.sh start tasktracker  

4.均衡block

[hadoop@hadoop04 hadoop]# ./bin/start-balancer.sh
1)如果不balance,那么cluster会把新的数据都存放在新的node上,这样会降低mapred的工作效率 
2)设置平衡阈值,默认是10%,值越低各节点越平衡,但消耗时间也更长

[root@slave-004 hadoop]# ./bin/start-balancer.sh -threshold 5

3)设置balance的带宽,默认只有1M/s

<property>
<name>dfs.balance.bandwidthPerSec</name> 
<value>1048576</value> 
<description>

Specifies the maximum amount of bandwidth that each datanode  
can utilize for the balancing purpose in term of  
the number of bytes per second.  
</description>
</property>

注意: 
1. 必须确保slavefirewall已关闭
2. 确保新的slaveip已经添加到master及其他slaves/etc/hosts中,反之也要将master及其他slaveip添加到新的slave/etc/hosts

 

删除节点

1.集群配置 
  修改conf/hdfs-site.xml文件

<property> 
<name>dfs.hosts.exclude</name> 
<value>/data/soft/hadoop/conf/excludes</value> 
<description>Names a file that contains a list of hosts that are  
not permitted to connect to the namenode.  The full pathname of the  
file must be specified.  If the value is empty, no hosts are  
excluded.</description>
</property>
2确定要下架的机器 
dfs.hosts.exclude定义的文件内容为,每个需要下线的机器,一行一个。这个将阻止他们去连接Namenode。如:

haoop04
3.强制重新加载配置

[root@master hadoop]# ./bin/hadoop dfsadmin  -refreshNodes

它会在后台进行Block块的移动 
4.关闭节点 
等待刚刚的操作结束后,需要下架的机器就可以安全的关闭了。

[root@master hadoop]# ./bin/ hadoop dfsadmin -report  

可以查看到现在集群上连接的节点

正在执行Decommission,会显示:
Decommission Status : Decommission in progress 
执行完毕后,会显示:
Decommission Status : Decommissioned 
5.再次编辑excludes文件 
一旦完成了机器下架,它们就可以从excludes文件移除了 
登录要下架的机器,会发现DataNode进程没有了,但是TaskTracker依然存在,需要手工处理一下

六,安装zookeeper:

1zookeeper概述:

ZooKeeper是一个分布式开源框架,提供了协调分布式应用的基本服务,它向外部应用暴露一组通用服务——分布式同步(Distributed Synchronization)、命名服务(Naming Service)、集群维护(Group Maintenance)等,简化分布式应用协调及其管理的难度,提供高性能的分布式服务。ZooKeeper本身可以以Standalone模式安装运行,不过它的长处在于通过分布式ZooKeeper集群(一个Leader,多个Follower),基于一定的策略来保证ZooKeeper集群的稳定性和可用性,从而实现分布式应用的可靠性。

hadoop01zookeeper1hadoop02zookeeper2hadoop03zookeeper3zookeerper

2,下载zookeeper-3.4.4解压到/usr/local/下,并修改权限

# chown -R hadoop:hadoop /usr/local/zookeeper-3.4.4/

# The number of milliseconds of each tick

tickTime=2000

# The number of ticks that the initial

# synchronization phase can take

initLimit=10

# The number of ticks that can pass between

# sending a request and getting an acknowledgement

syncLimit=5

# the directory where the snapshot is stored.

# do not use /tmp for storage, /tmp here is just

# example sakes.

dataDir=/hadoop/zookeeper

# the port at which the clients will connect

clientPort=2181

server.1=hadoop01:28888:38888

server.2=hadoop02:28888:38888

server.3=hadoop03:28888:38888

#

# Be sure to read the maintenance section of the

# administrator guide before turning on autopurge.

#

# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance

#

# The number of snapshots to retain in dataDir

#autopurge.snapRetainCount=3

# Purge task interval in hours

# Set to "0" to disable auto purge feature

#autopurge.purgeInterval=1

注解:

tickTime发送心跳时间间隔,单位毫秒

initlimitsysnclimit,两者都是以ticktime的总数进行度量(上面的时间为10*2000=20s)initLimit参数设定了允许所有跟随者与***进行连接并同步的时间,如果在设定的时间内内,半数以上的跟随者未能完成同步,***便会宣布放弃领导地位,然后进行另外一次***选举。如果这种情况经常发生,通过查看日志中的记录发现,则表明设定的值太小。

syscLimit参数设定了允许一个跟随者与***进行同步的时间。如果在设定的时间内,一个跟随者未能完成同步,它将会自己重启,所有关联到这个跟随者的客户端将连接到另外一个跟随者。

datadir保存的zk中持久化的数据,zk中存在两种数据,一种用完即消失,一种需要持久存在,zk的日志也保存在这

[hadoop@hadoop01 ~]$ mkdir /hadoop/zookeeper/

[hadoop@hadoop01 ~]$ echo "1" > /hadoop/zookeerper/myid

zookeeper目录分别复制到hadoop02hadoop03,并创建/hadoop/zookeeper目录,并在其目录下创建其myid

3,在对应的节点上启动服务

[hadoop@hadoop01 zookeeper-3.4.4]$ sh bin/zkServer.sh start

三个节点启动完之后,查看

[hadoop@hadoop01 zookeeper-3.4.4]$ jps

1320 NameNode

2064 Jps

1549 JobTracker

1467 SecondaryNameNode

1996 QuorumPeerMain

[hadoop@hadoop01 zookeeper-3.4.4]$ sh bin/zkServer.sh status 查看当前节点是否是leader

[hadoop@hadoop01 zookeeper-3.4.4]$ sh bin/zkServer.sh status

JMX enabled by default

Using config: /usr/local/zookeeper-3.4.4/bin/../conf/zoo.cfg

Mode: follower 表示是跟从

七,安装hbase

HBase集群需要依赖于一个Zookeeper ensembleHBase集群中的所有节点以及要访问HBase

的客户端都需要能够访问到该Zookeeper  ensembleHBase自带了Zookeeper,但为了方便

其他应用程序使用Zookeeper,***使用单独安装的Zookeeper ensemble

此外,Zookeeper ensemble一般配置为奇数个节点,并且Hadoop集群、Zookeeper ensemble

HBase集群是三个互相独立的集群,并不需要部署在相同的物理节点上,他们之间是通过网

络通信的。

一,下载hbase-0.94.1 ,并解压到/usr/local下,hbase的版本需要与hadoop对应,查看是否对应只需要看hbase-0.94.1/lib/hadoop-core后面的版本号是否与hadoop的版本对应,如果不对应,可以将hadoophadoop-core文件复制过来,但是不能保证不会有问题

[hadoop@master hbase-0.94.12]$ vim conf/hbase-env.sh

export JAVA_HOME=/usr/java/jdk

export HBASE_CLASSPATH=/usr/local/hadoop-1.0.4/conf

export HBASE_MANAGES_ZK=false

export HBASE_HEAPSIZE=2048

tips:

其中,HBASE_CLASSPATH指向存放有Hadoop配置文件的目录,这样HBase可以找到HDFS

的配置信息,由于本文HadoopHBase部署在相同的物理节点,所以就指向了Hadoop

装路径下的conf目录。HBASE_HEAPSIZE单位为MB,可以根据需要和实际剩余内存设置,

默认为1000HBASE_MANAGES_ZK=false指示HBase使用已有的Zookeeper而不是自带的。

[root@hadoop01 ~]# source /etc/profile

hbase-094.1/src/main/resources/hbasse-default.xml可以将这个文件复制到conf目录下,进行修改

[hadoop@hadoop01 hbase-0.94.1]$ vim conf/hbase-site.xml

<configuration>

 <property>

   <name>hbase.rootdir</name>

   <value>hdfs://hadoop01:9000/hbase</value>

   <description>The directory shared by region servers.</description>

 </property>

 <property>

   <name>hbase.hregion.max.filesize</name>

   <value>1073741824</value>

   <description>

   Maximum HStoreFile size. If any one of a column families' HStoreFiles has

   grown to exceed this value, the hosting HRegion is split in two.

   Default: 256M.

   </description>

 </property>

 <property>

   <name>hbase.hregion.memstore.flush.size</name>

   <value>134217728</value>

   <description>

   Memstore will be flushed to disk if size of the memstore

   exceeds this number of bytes.  Value is checked by a thread that runs

   every hbase.server.thread.wakefrequency.

   </description>

 </property>

 <property>

   <name>hbase.cluster.distributed</name>

   <value>true</value>

   <description>The mode the cluster will be in. Possible values are

     false: standalone and pseudo-distributed setups with managed Zookeeper

     true: fully-distributed with unmanaged Zookeeper Quorum (see hbase-env.sh)

</description>

 </property>

 <property>

     <name>hbase.zookeeper.property.clientPort</name>

     <value>2181</value>

     <description>Property from ZooKeeper's config zoo.cfg.

     The port at which the clients will connect.

     </description>

 </property>

 <property>

   <name>zookeeper.session.timeout</name>

   <value>120000</value>

 </property>

 <property>

   <name>hbase.zookeeper.property.tickTime</name>

   <value>6000</value>

 </property>

   <property>

     <name>hbase.zookeeper.quorum</name>

     <value>hadoop01,hadoop02,hadoop03</value>

     <description>Comma separated list of servers in the ZooKeeper Quorum.

     For example, "host1.mydomain.com,host2.mydomain.com,host3.mydomain.com".

     By default this is set to localhost for local and pseudo-distributed modes

     of operation. For a fully-distributed setup, this should be set to a full

     list of ZooKeeper quorum servers. If HBASE_MANAGES_ZK is set in hbase-env.sh

     this is the list of servers which we will start/stop ZooKeeper on.

     </description>

</property>

<property>

       <name>hbase.tmp.dir</name>

       <value>/hadoop/hbase</value>

   </property>

</configuration>

注释:

1hbase.rootdirhbase所使用的文件系统为HDFS,根目录为hdfs://node0:9000/hbase,该目录应该由HBase自动创建,只需要指定到正确的HDFS NameNode上即可。

2hbase.hregion.max.filesize设置HStoreFile的大小,当 大于这个数时,就会split 成两个文件

3hbase.hregion.memstore.flush.size设置memstore的大小,当大于这个值时,写入磁盘

4hbase.cluster.distributed指定hbase为分布式模式

5hbase.zookeeper.property.clientPort指定zk的连接端口

6zookeeper.session.timeoutRegionServerZookeeper间的连接超时时间。当超时时间到后,ReigonServer会被ZookeeperRS集群清单中移除,HMaster收到移除通知后,会对这台server负责的regions重新balance,让其他存活的RegionServer接管.

7hbase.zookeeper.property.tickTime

8hbase.zookeeper.quorum默认值是 localhost列出zookeeprensemble servers

9hbase.regionserver.handler.count
默认值:10
说明:RegionServer的请求处理IO线程数。
调优:
这个参数的调优与内存息息相关。
较少的IO线程,适用于处理单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cachescan,均属于Big PUT)或ReigonServer的内存比较紧张的场景。
较多的IO线程,适用于单次请求内存消耗低,TPS要求非常高的场景。设置该值的时候,以监控内存为主要参考。
这里需要注意的是如果serverregion数量很少,大量的请求都落在一个region上,因快速充满memstore触发flush导致的读写锁会影响全局TPS,不是IO线程数越高越好。
压测时,开启Enabling RPC-level logging,可以同时监控每次请求的内存消耗和GC的状况,***通过多次压测结果来合理调节IO线程数。
这里是一个案例?Hadoop and HBase Optimization for Read Intensive Search Applications,作者在SSD的机器上设置IO线程数为100,仅供参考。

10hbase.tmp.dir指定HBase将元数据存放路径

 

[hadoop@hadoop01 hbase-0.94.1]$ vim conf/regionservers  相当于hadoopslave

hadoop02

hadoop03

11,启动所有hbase进程

[hadoop@master hbase-0.94.12]$ bin/start-hbase.sh

12,停止

[hadoop@master hbase-0.94.12]$ bin/stop-hbase.sh

13,连接hbase创建表

[hadoop@master hbase-0.94.12]$ bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.94.12, r1524863, Fri Sep 20 04:44:41 UTC 2013

 

hbase(main):001:0>

14创建一个名为 small的表,这个表只有一个 column family 为 cf。可以列出所有的表来检查创建情况,然后插入些值。

hbase(main):003:0> create 'small', 'cf'
0 row(s) in 1.2200 seconds
hbase(main):003:0> list
small
1 row(s) in 0.0550 seconds
hbase(main):004:0> put 'small', 'row1', 'cf:a', 'value1'
0 row(s) in 0.0560 seconds
hbase(main):005:0> put 'small', 'row2', 'cf:b', 'value2'
0 row(s) in 0.0370 seconds
hbase(main):006:0> put 'small', 'row3', 'cf:c', 'value3'
0 row(s) in 0.0450 seconds

15、检查插入情况.Scan这个表

hbase(main):005:0> scan 'small'

Get一行,操作如下

hbase(main):008:0> get 'small', 'row1'

disable 再 drop 这张表,可以清除你刚刚的操作

hbase(main):012:0> disable 'small'
0 row(s) in 1.0930 seconds
hbase(main):013:0> drop 'small'
0 row(s) in 0.0770 seconds

16出与导入

[hadoop@master hbase-0.94.12]$ bin/hbase org.apache.hadoop.hbase.mapreduce.Driver export small small

导出的表,在hadoop文件系统的当前用户目录下,small文件夹中。例如,导出后在hadoop文件系统中的目录结构:

[hadoop@master hadoop-1.0.4]$ bin/hadoop dfs -ls

Found 1 items

drwxr-xr-x   - hadoop supergroup          0 2013-10-22 10:44 /user/hadoop/small

[hadoop@master hadoop-1.0.4]$ bin/hadoop dfs -ls ./small

Found 3 items

-rw-r--r--   2 hadoop supergroup          0 2013-10-22 10:44 /user/hadoop/small/_SUCCESS

drwxr-xr-x - hadoop supergroup          0 2013-10-22 10:44 /user/hadoop/small/_logs

-rw-r--r--   2 hadoop supergroup      285 2013-10-22 10:44 /user/hadoop/small/part-m-00000

2.把这个表导入到另外一台集群中hbase中时,需要把part-m-00000put另外hadoop中,假设put的路径也是:

/user/hadoop/small/

而且,这个要导入的hbase要已经建有相同第表格。

那么从hadoop中导入数据到hbase

#hbase org.apache.hadoop.hbase.mapreduce.Driver import small part-m-00000  

这样,没有意外的话就能正常把hbase数据导入到另外一个hbase数据库。

 

17.Web UI

用于访问和监控Hadoop系统运行状态

 

Daemon

缺省端口

配置参数

HDFS

Namenode

50070

dfs.http.address

Datanodes

50075

dfs.datanode.http.address

Secondarynamenode

50090

dfs.secondary.http.address

Backup/Checkpoint node*

50105

dfs.backup.http.address

MR

Jobracker

50030

mapred.job.tracker.http.address

Tasktrackers

50060

mapred.task.tracker.http.address

HBase

HMaster

60010

hbase.master.info.port

HRegionServer

60030

hbase.regionserver.info.port

220821638.png

220834707.png

 

 

本文出自 “smalldeng” 博客,请务必保留此出处http://smalldeng.blog.51cto.com/1038075/1329290

责任编辑:王程程 来源: 51CTO博客
相关推荐

2012-09-18 09:55:44

Hadoop 2.0

2013-09-27 11:14:09

2010-06-04 17:34:13

Hadoop0.20.

2010-06-04 17:21:48

2022-09-06 14:23:53

zookeeperHbase

2020-11-19 10:30:28

Linux

2010-08-18 13:10:33

MySQL NDB 6

2017-01-17 09:38:52

ZooKeeperHadoopHBase

2012-01-13 10:22:22

ibmdwlotus

2010-08-31 10:20:10

DB2MSCS集群

2016-12-14 14:47:59

Zookeeper服务器

2012-06-25 10:30:06

Hadoop集群

2017-07-04 10:39:21

hadoop hbas数据块启动

2016-12-14 15:59:31

HBase分布式数据

2016-11-09 14:16:39

HBase集群管理

2016-12-13 16:36:15

Hadoopwindows

2013-12-30 16:08:20

华为Oceanstor V重删备份

2010-09-06 09:22:01

DB2集群服务

2019-12-25 14:20:01

Zookeeper框架大数据

2011-04-21 10:05:35

Hadoop集群lzo
点赞
收藏

51CTO技术栈公众号