为什么大数据比不上好直觉

云计算
大数据可能是“新的石油”,但我要提醒大家,不要把它当作一个新的信仰来崇拜。身处数据洪流之中,我们不仅失去了对商业的大局观,还失去了部分人性。如果我们认为更好的生活就等同于更好的算法,还能留下多少创新空间?

大数据是一笔大生意。感应器、GPS跟踪、数学建模和人工智能给企业带来了大规模的实时市场洞察力,为监控、定位、衡量员工和顾客开辟了史无前例的新方法。分析公司高德纳(Gartner)预计,采用大数据技术的公司将“在所有可测的财务指标上超过竞争者20%。”

大数据可能是“新的石油”,但我要提醒大家,不要把它当作一个新的信仰来崇拜。身处数据洪流之中,我们不仅失去了对商业的大局观,还失去了部分人性。如果我们认为更好的生活就等同于更好的算法,还能留下多少创新空间?

我不是有数据恐惧症,我担忧的是纯粹依靠数据。我不反对定量的测量方法,但我质疑它们作为商业表现、社会繁荣和生活意义等重要指标的权威性。

大数据有许多好处,不过我们还需要用“大直觉”来完善它。以下是六大理由:

大数据=老大哥?《纽约时报》(New York Times)的史蒂夫•洛尔把大数据看作美国管理学家泰勒的“科学管理”的传承。泰勒主义的核心是业绩表现,而如今我们开始衡量快乐感和幸福感、消费偏好、社交关系、体育活动、态度、情绪、情感、行为和身体机能——换句话说,我们在评测自己的生活。

当然,某种程度上说,“量化自身”的应用程序能让人们更好地控制自己的决定。然而,如此一来,我们就在自我改善这一想法的驱使下,把曾经私密的领域开放给了商业世界。

大数据不具有社会性。人类是社会动物。研究显示,人与人之间的关系,尤其是友谊与婚姻,是快乐和自我实现的关键因素。我们的大脑有着关心的本能,我们的心脏和思想有着领会同类并与他们产生共鸣的惊人能力。我们能表现出同情,感受到情绪波动,察觉到非语言的细微暗示,容忍或拥抱,接受与拒绝,爱与痛,体会到我们所有的感受,做出不合理的举动,丧失自制力。这些人性的关键特质受到了里昂•维瑟提尔所称的“主观数字化”的威胁。

最近的社会基因研究显示,数字过载不仅降低了我们的生产力,还削弱了我们进化出的与他人交流的能力。

大数据造成小世界。道德感通过共鸣而增强。矛盾的是,在这个高度连接的时代,我们越来越需要面对一个挑战:与想法、价值观、信仰、信念和文化相异的人们交流。数字技术可以根据我们的偏好,为我们定制线上和线下的社交活动,我们越来越沉浸在自己的世界中——正如艾利•帕雷瑟所说的“过滤泡泡”。它通过智能算法,向我们提供熟悉的内容、文化和同伴,同时把这些东西直接砸入我们的舒适地带。我们不“赞”与我们不同的人和事物,陷入了社会和文化上狭隘的恶性循环。

大数据让我们更智能,而不是更有智慧。我们这个数据驱动的世界不仅变得更小,还变得更快。信息的实时传递促使我们不断地立刻做出回应。道格拉斯•洛西科夫打趣阿尔文•托夫勒1970年的著作《未来冲击》(Future Shock)的书名,将我们现在的状态称为“现时冲击”(Present Shock),他哀叹,“一切不是发生在当下的事情日益遭到漠视,而一切被认为是发生在当下的事情又让人应接不暇。”

数据可以迅速为我们提供信息,不过要快速做出意义深远的决定,直觉是更好的工具。普拉萨德•凯帕和纳威•拉裘在最近的一本书中力劝商界领袖进行“从智能到智慧”的转变。他们的意见很中肯。拥有智能的公司和领袖依靠持续的反馈成长起来。智能很快,智慧却很慢。拥有智慧的公司和领袖需要时间来实现转变。

大数据(过于)明显。“你只能管理你所测量到的”——真的吗?金融危机已经证明我们对于所测量的事物管理得很失败。失败的兼并、失败的产品发布、信誉危机、社交媒体的灾难,这一切都证明,我们需要更好地管理那些我们无法测量的事物。

正如设计界的思想家罗杰•马丁所言,领袖需要“兼听则明”。评价21世纪的商界领袖,不再看他/她能排除多少不确定性,而要看他/她能忍受多少不确定性。

大数据不敌直觉力。数据也许能预测新问题,也许能找到已知问题的新解决办法,不过只有人类的直觉和巧妙心思才能提出开创性的新想法。这是独一无二的人类天赋——它远远超过解决一个问题,超过满足某个功能需求的层次。

同样的,如果我们量化所有的人际关系,就无法给人类的判断力留下任何回旋余地。因为我们常常把对人们的感觉和他们的行为混合在一起,我们的判断力比二进制数字更加复杂。它意味着我们可以对双重行为有着更细微的评估和反应,我们可以选择将失败视为创新的先决条件。很难想象,如果我们丧失原谅的能力,如何还能朝着任何目标前进。

让我们抵抗冲向数据的欲望,花时间沉住气,必要时再加快步伐。让我们允许自己不时从数据中解脱出来,去思考什么才是真正重要的东西。让我们用数据来讲述自己故事,但不要让数据成为我们唯一的故事。

责任编辑:王程程 来源: 财富中文网
相关推荐

2014-05-29 09:22:57

大数据

2012-06-07 10:06:11

虚拟化桌面虚拟化Windows To

2013-01-04 09:53:32

大数据技术大数据

2014-06-05 15:26:42

2013-01-07 11:31:11

大数据大数据应用

2016-07-25 18:03:35

小企业大数据

2015-01-07 14:04:25

2022-08-31 15:40:13

云原生数据

2022-04-02 09:32:06

大数据数据智能企业

2019-07-03 10:57:03

大数据人力资源软件

2013-01-08 10:19:35

大数据数据分析大数据全球技术峰会

2016-07-21 10:37:53

云计算

2019-12-11 14:23:50

大数据商业 价值分析

2021-04-21 08:46:19

大数据大数据技术

2019-12-16 15:17:13

大数据信息安全数据库

2017-01-19 08:57:40

大数据行业技术

2021-04-12 22:19:54

大数据计算机互联网

2012-11-28 10:05:46

信息大数据

2019-05-23 09:50:46

大数据IT人工智能

2017-06-20 09:54:18

大数据架构数据分析
点赞
收藏

51CTO技术栈公众号