如何才能避免运用大数据的失败

云计算
近几年,云计算浪潮的来临,大数据的随后而至,给IT带来了不小的动力,也许大数据会成为恢复业界活力的强心剂。与此同时,日本政府提出新的IT战略--“将行政数据向民间开发,以便不断创造新商务”。也就是说,如何有效利用数据,推动商业成功,业已成为国家战略的一环。

当一个新的理论被提出和应用时,似乎都会遭到不同程度的反对,而在最近,“大数据”就成为IT界被攻击的对象,人们对大数据是褒贬不一,但业界对大数据抱有极大的期待,这点从大量的大数据研讨会和展示会风潮就足以证明。

近几年,云计算浪潮的来临,大数据的随后而至,给IT带来了不小的动力,也许大数据会成为恢复业界活力的强心剂。与此同时,日本政府提出新的IT战略--“将行政数据向民间开发,以便不断创造新商务”。也就是说,如何有效利用数据,推动商业成功,业已成为国家战略的一环。

很多人对大数据有着各种不同的看法,也提出了各种问题。这些对IT业界的读者而言,都是理所当然的事情。但正是这些众所周知的道理通常也是非常重要不可忽视的。下面将重新提出大数据的“陷阱”,探讨如何才能避免运用大数据的失败。

是否真正需要大量的数据

首先,必须明确的一点是,是否真正需要大量的数据。有人说,只要有一定量的数据,无关数据数量,分析的结果并不会有很大的差别。如果果真如此,不禁让人产生怀疑,即到底大数据是为何而存在。这些观点,使人感到大数据所面临的矛盾。本以为通过大数据分析,满怀期待能够发现以往没有认识到的新的东西,但有时其结果不过是已有所知的事实而已。如果企业为系统开发投入数十亿日元,得出的不过是证明资深职员“经验”的结论,这也未免让人难以接受。正因为如此,就有必要重新考虑为何需要大数据这一问题。

数据的“质量”有无问题

第二点是由谁来维护大量的数据,即数据的“质量”如何能够得到保障。举个例子,某企业的总经理每个月都会收到有交易往来的IT供应商的宣传杂志,但收件人的头衔不是“总经理”,而是他曾经兼任公司CIO时的头衔“常务董事”。虽然将头衔搞错,但还是都能收到,因此并没有太在意。但当这家IT供应商的总经理到公司进行礼节性拜访时,就提出了希望改一下头衔的想法。

该IT供应商的新卖点就是大数据,公司的总经理当场表示回去马上会进行修改。起初以为这点事情对于运营大数据业务的IT供应商而言不过是举手之劳,一定会进行纠正。但是,等到下一个月他收到的的PR杂志时,发现收件人的头衔仍然是“常务董事”。这位总经理通过两本PR杂志感到仿佛看到了大数据的现状,因此他非常失望地说:“归根到底IT供应商并没有维护顾客数据库”。

例子中所提到的虽然是顾客数据,但也不仅仅是顾客数据,说到大数据必然还需要处理很多各种各样的企业外部的数据。但是,这些数据是否是最新数据,其数据的精确度又如何等数据的“质量”就会非常重要。分析出处不明的数据将毫无意义。如果顾客数据不能随时进行维护,也就不会产生任何价值。

是否忽视了现场职工的工作干劲

企业应当努力培养数据科学家,同时提升现场职员的分析数据的能力。如果在店头等现场直接接触顾客的员工变得“擅长数字”,他们也能够常常通过数据考虑事情并进行判断,这样的企业必定会强大起来。

通过现场增加的销售额,也许和利用大数据获得的销售数字相比很小,而且其分析能力也远远不及数据科学家。但是即便如此,如果通过将这种方式横向拓展到其他现场,积累的数字也会非常可观。同时,最为重要的是,这种方式能够提升现场员工的工作动力。

文中所提到的这几点对大数据很重要,而且还是和用于整个信息系统,IT业界对于大数据的期待已久,想要让大数据成长壮大,就需要踏实努力,不要被华丽的外表所束缚摆弄,希望大家对上面这几点仔细考虑。

责任编辑:王程程 来源: CIO时代网
相关推荐

2017-12-20 15:25:51

数据分析大数据企业

2013-07-26 10:15:29

云计算大数据Hadoop

2017-10-24 13:14:00

大数据数据科学数据分析

2017-10-16 14:29:36

2014-09-09 10:56:24

大数据

2019-08-19 09:35:22

大数据数据算法算法崇拜

2021-01-27 13:32:27

大数据互联网IT

2020-11-27 10:10:52

大数据

2015-08-17 13:26:41

大数据

2013-07-01 14:41:46

失败移动APP移动创业

2015-04-15 14:58:20

大数据安防与大数据

2013-03-28 10:52:41

企业级移动应用开发移动信息化

2016-11-08 12:54:07

大数据越南航空

2020-09-22 15:41:33

大数据

2021-06-28 13:34:06

大数据大数据监管数据安全

2013-01-06 10:15:02

大数据分析数据分析师大数据

2012-08-20 09:56:48

大数据

2017-06-14 08:48:49

打印机打印成本精细化管理

2021-10-27 10:03:16

风险管理企业ERM

2017-07-20 11:12:34

数据中心电源设计调试
点赞
收藏

51CTO技术栈公众号