Hadoop核心机制详细解析

运维 系统运维 Hadoop
Hadoop的核心机制是通过HDFS文件系统和MapReduce算法进行存储资源、内存和程序的有效利用与管理。在现实的实例中,通过Hadoop,可以轻易的将多台普通的或低性能的服务器组合成分布式的运算-存储集群,提供大数据量的存储和处理能力。

Hadoop的核心机制是通过HDFS文件系统和MapReduce算法进行存储资源、内存和程序的有效利用与管理。在现实的实例中,通过Hadoop,可以轻易的将多台普通的或低性能的服务器组合成分布式的运算-存储集群,提供大数据量的存储和处理能力。

知其然,知其所以然。要想深入学习和理解Hadoop的核心机制,还要从MapReduce和HDFS的原理入手。

MapReduce的“大事化小”

作为Google提出的架构,MapReduce通过Map(映射)和Reduce(化简)来实现大规模数据(TB级)的并行计算。可以简单理解为,通过Map(映射)函数,把一组键值对映射成一组新的键值对;指定并发的Reduce(化简)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

MapReduce是一种大数据计算的开发模式和思想方法。开发人员先分析需求所提出问题的解决流程,找出数据可以并发处理的部分(Reduce),也就是那些能够分解为小段的可并行处理的数据,再将这些能够采用并发处理的需求写成Map程序(Map)。

然后就可以使用大量服务器来执行Map程序,并将待处理的庞大数据切割成很多的小份数据,由每台服务器分别执行Map程序来处理分配到的那一小段数据,接着再将每一个Map程序分析出来的结果,透过Reduce程序进行合并,最后则汇整出完整的结果。

MapReduce的整个流程就像…

MapReduce是Hadoop分布式计算的关键技术,将要执行的问题,拆解成Map和Reduce的方式来执行,以达到分散运算的效果。例如要搜寻网页中的“In Big Data”这个词,可以先用Map程序,来计算出所有网页中,每一个词的位置。再使用Reduce程序,在每一个字的清单中,检索出“In Big Data”所对应的URL,您就来到了这个博客。MapReduce程序的执行过程如下:

MapReduce运作流程 

MapReduce运行流程

MapReduce的运作方式就像快递公司一样。物流部门会将发往各地的包裹先运送到各地的物流分站,再由分站派出进行派送;快递员等每个包裹的用户签单后将数据反馈给系统汇总,完成整个快递流程。在这里,每个快递员都会负责配送,所执行的动作大致相同,且只负责少量的包裹,最后由物流公司的系统进行汇总(而不是从一个库房一个快递员直接发往各地;这样的话估计顺风、京东神马的会被人骂死)。

在Hadoop集群架构中,服务器依据用途可分成Master节点和Worker节点,Master负责分配任务,而Worker负责执行任务。

Hadoop中的Master与Worker

Hadoop运算集群中的服务器依用途分成Master节点和Worker节点。Master节点中含有JobTracker、NameNode、TaskTracker和DataNode程序;Worker节点含有TaskTracker和DataNode。另外在系统的架构上,最简单的Hadoop架构,可以分成上层的MapReduce运算层以及下层的HDFS数据层。

在Master节点的服务器中会执行两套程序:一个是负责安排MapReduce运算层任务的JobTracker,以及负责管理HDFS数据层的NameNode程序。而在Worker节点的服务器中也有两套程序,接受JobTracker指挥,负责执行运算层任务的是TaskTracker程序,与NameNode对应的则是DataNode程序,负责执行数据读写操作以及执行NameNode的副本策略。

在MapReduce运算层上,担任Master节点的服务器负责分配运算任务,Master节点上的JobTracker程序会将Map和Reduce程序的执行工作指派给Worker服务器上的TaskTracker程序,由TaskTracker负责执行Map和Reduce工作,并将运算结果回复给Master节点上的JobTracker。

在HDFS数据层上,NameNode负责管理和维护HDFS的名称空间、并且控制档案的任何读写动作,同时NameNode会将要处理的数据切割成一个个档案区块(Block),每个区块是64MB,例如1GB的数据就会切割成16个档案区块。NameNode还会决定每一份档案区块要建立多少个副本,一般来说,一个档案区块总共会复制成3份,并且会分散储存到3个不同Worker服务器的DataNode程序中管理,只要其中任何一份档案区块遗失或损坏,NameNode会自动寻找位于其他DataNode上的副本来回复,维持3份的副本策略。

在一套Hadoop集群中,分配MapReduce任务的JobTracker只有1个,而TaskTracker可以有很多个。同样地,负责管理HDFS文件系统的NameNode也只有一个,和JobTracker同样位于Master节点中,而DataNode可以有很多个。

不过,Master节点中除了有JobTracker和NameNode以外,也会有TaskTracker和DataNode程序,也就是说Master节点的服务器也可以在本地端扮演Worker角色的工作。

在部署上,因为Hadoop采用Java开发,所以Master服务器除了安装操作系统如Linux之外,还要安装Java执行环境,然后再安装Master需要的程序,包括了NameNode、JobTracker和DataNode与TaskTracker。而在Worker服务器上,则只需安装Linux、Java环境、DataNode和TaskTracker。

在之后的文章中将详细说明Hadoop安装部署方面的问题。这里只针对Hadoop的运行机制及内部细节做了讨论;在实际的应用中虽然还需要很多知识,但就理解Hadoop和MapReduce核心思想来说,以上的内容值得反复推敲。对技术,要知其然,知其所以然!

责任编辑:黄丹 来源: InBigData
相关推荐

2024-07-30 12:24:23

2011-12-15 09:33:19

Java

2011-04-07 17:39:57

Shapping

2011-04-07 17:43:37

Shapping

2011-04-07 17:27:52

Policing

2011-04-07 17:54:22

Policing

2024-04-01 08:29:09

Git核心实例

2024-09-02 09:00:59

2010-04-26 10:44:27

Oracle SCN

2024-02-21 12:14:00

Gochannel​panic​

2014-07-15 11:15:44

hadoop分布式部署

2013-07-08 09:59:47

思科核心机箱思科交换机思科

2015-06-17 11:27:47

Hadoop集群管理安全机制

2011-07-13 09:12:36

2024-10-12 12:55:26

2017-07-04 09:53:49

机房运维机房电源

2017-10-19 15:34:52

Hadoop技术机制学习

2009-06-18 09:47:14

Spring的核心

2011-03-08 14:45:59

2009-10-26 10:42:43

点赞
收藏

51CTO技术栈公众号