二层交换的含义
以太网是到目前为止在家庭和办公室中最常用的协议。连接非常简单,只需将电脑接到家庭办公交换机上,或者办公室墙壁上的RJ45插座上。为了允许数据分组找到其目的地,在数据面和控制面背后运行着多种协议和技术。这些统称为二层交换或桥接。数据面的基本特点包括:
1.基于MAC目的地址和VLAN ID前转
2.MAC源地址学习与老化
3.未知MAC地址的洪泛
4.组播与广播
5.VLAN成员集
6.VLAN处理(插入/替换/移除服务标签和客户标签)
端口过滤或隔离
以太网交换设备可以支持以上大多数功能,而且这些设备广泛应用于网络设备中,实现分组交换。网络设备设计人员都熟悉交换设备以及如何使用。
我们现已进入分组移动回程的时代,运营商正在建设分组交换网络,用于将分组从基站传送到RNC。分组与LAN环境中的交换方式不同,而且标准以太网交换设备未提供充足的功能。分组移动回程的一种常用技术是分组传输网络 (PTN)。本文介绍二层交换和PTN交换之间的几点明显区别。
前转
标准二层交换机将把一个分组从一个以太网端口前转到另一个。交换在物理端口间进行。
网络边缘的PTN交换机有两个方面,分别是用户接口和网络接口。用户接口连接以太网端口上的用户流量。网络接口通过伪线 (PW) 和隧道(即LSP)与网络设备连接。许多PW通向同一个LSP,而许多LSP可能通向同一个物理端口。分组在用户端口间交换,或者在用户端口和PW间交换。尽管前转方法与二层交换机相似,但PTN增加了一个新的维度,即虚拟PW端口。
封装
在二层交换中,分组格式通常保持不变。大多数分组编辑工作仅在VLAN字段中进行。入站和出站分组可以携带0、1或2个VLAN。VLAN处理规则必须足够灵活,以处理任意组合。
对于PTN交换,用户分组在交换到PW端口后必须封装到PW有效荷载中。PW分组可以有非常复杂的格式,包括外部二层头、外部VLAN、LSP标记、PW标记、控制字和内部MAC或IP帧。交换机需要首先分类外部二层头和标记,以识别PW以及PW标记的协议。之后,内部帧(以太网或IP)才可以被提取或前转。这种MAC-MPLS-MAC格式对分组处理提出了一个严峻的挑战。有些功能(例如分类)需要利用两次,第一次用于外部MAC,然后用于内部MAC。有些基于管道的架构可能难以满足这些要求。
前转表
二层交换机使用MAC目的地址和VLAN搜索前转表。一般情况下,一台二层交换机只有一个表。
PTN交换机需要多个前转表才能支持多个用户。搜索将分两步进行。第一步是识别前转表,而第二步是定位表中的前转规则。
保护
以太网的性质是“尽力而为”,因此,保护并不是需要关注的问题。这对LAN环境已经足够好,但对于运营商网络绝对不够。运营商习惯于享受到SONET/SDH中的APS(自动保护交换)支持能力,并将这一想法运用到PTN。
首先,PW和LSP需要1:1和1+1保护。在主PW出现故障时,该PW中的所有流量需要在50毫秒内切换到备用PW。与此相似,在主LSP出现故障时,该LSP中的所有PW将在50毫秒内切换到备用LSP。然后,环网保护要求环网上的所有流量在环网出现故障时重新路由。对于网状网络技术,快速重路由 (FRR) 也是一种保护机制,用于保证在链路故障时的快速恢复。
所有这些保护机制都要求数据面检查保护状态,并且做出前转决策。1+1保护状态下需要分组复制。CPU干预应完全避免,或者尽量保持最低水平。这对数据路径的设计提出了挑战。
OAM
与保护一样,OAM是传统二层交换忽略的另一个方面,而从运营商角度讲,这是一项必须的功能。PW和LSP级都需要CFM和PM,目的是支持APS,并保证遵守服务等级协议 (SLA)。连接检查 (CC) 是检测任何故障和触发APS的关键。延迟和损耗测量是满足SLA的重要证据。
过去,OAM功能可与数据面处理分开,并单独处理。现在的趋势是,OAM越来越与数据面整合。例如,CC分组应尽可能多地实现最短的故障检测时间。但是,更高的分组速率要求更高的性能支持,因此最好在数据面处理CCM。延迟测量(DM) 要求硬件能够插入时间戳。损耗测量 (LM) 利用数据路径统计结果。将DM和LM集成到数据面设计中具有重要意义,而这对数据面处理器提出了新的要求。
二层和三层
过去,交换机进行二层前转,而路由器进行三层前转。这些是不同的装置和设备,并用在不同的网络中。
PTN成为一个服务类型。运营商当然希望在同一个分组网络同时支持二层和三层服务。因此,来自用户接口的以太网和IP网络流量将通过PTN接受和传输。由于这个原因,PTN交换机需要能够提供二层和三层服务。对于二层服务,它将基于前转数据库把以太网分组交换到PW。对于三层服务,它将根据路由表把IP分组路由给PW。处理二层交换和三层路由的能力是一个巨大差异。
水平分割
众所周知,PTN交换机将在用户端口和PW之间进行分组交换。通常,这必须遵守一些额外的前转规则。例如,在网状网络中不允许两个PW之间的前转。另外,从一个用户端口组向另一个用户端口组的前转也不允许。这种基于PW或端口的前转规则是水平分割的基础。
服务质量
服务质量是一套特性,用于增强对SLA的遵从。它可能包括:策略、整型、日程安排、流量管理、拥塞控制、评论,简言之,与二层交换机相比,PTN交换机要求更全面、更先进的服务质量特性。
同步
除了数据外,运营商还希望将时间信息传输给基站。时间信息可能是频率、阶段或者一天内的时间。IEEE 1588协议是实现这一目的的良好备选协议。然而,IEEE 1588的成功在很大程度上依赖于分组网络本身,尤其是网络延时变化。如果1588分组遇到过多的延时变化或者不对称延时,它就不可能从1588分组中恢复准确的时间信息。解决这个问题的方法有两种:
(1) 设计网络时说延时变化保持极小的水平
(2) 在每个网络节点上支持透明时钟,这样,通过网络的延时是已知的,而且可以补偿。
在许多情况下,第2个选项更容易实现,这使得PTN对于支持透明时钟的要求降低。从硬件角度讲,交换机需要计算交换机中1588分组的等待时间,从分组头的一个专用字段中读取一个数值,将等待时间加到该值中,并写回分组中。所有这些都在分组传输的过程中进行。
结论
我们已经讨论了二层交换和PTN交换,并从特性和功能方面确定了许多关键区别。二者之间还有许多区别。二层交换机已经成熟,并且被网络设备设计人员所熟知。PTN交换机是一种针对分组移动回程的新兴技术,具有光明的前景。尽管两者都基于分组交换,但区别也很明显。PTN交换机可以视为一个超集,它基本包含二层交换机的所有功能,但也增加了更多的功能。
分组移动回程这方面,运营商不仅需要二层交换。它们还需要更强大、更灵活的数据面处理器,以满足这些要求。由于PTN和其它技术仍是新技术,而且许多协议和标准尚未完全得到认可,因此,选择可编程、可升级的数据面解决方案非常重要。
【编辑推荐】