在之前的Mongodb源码分析之Mongos分析中,介绍了mongos的启动流程,在那篇文章的结尾,介绍了mongos使用balancer来进行均衡,今天就继续讲其实现方式。
首先我们看一下Balancer及相关实现策略的类图:
可以看到Balancer类里包含一个BalancerPolicy,其指向一个均衡策略,该策略会实现查找并收集要迁移的chunk。
这里先看一下Balancer的类定义,如下:
- //balace.h
- class Balancer : public BackgroundJob {
- public:
- Balancer();
- virtual ~Balancer();
- // BackgroundJob methods
- virtual void run();
- virtual string name() const { return "Balancer"; }
- private:
- typedef BalancerPolicy::ChunkInfo CandidateChunk;
- typedef shared_ptr<CandidateChunk> CandidateChunkPtr;
- //mongos名称(hostname:port)
- string _myid;
- // Balancer 启动时间
- time_t _started;
- // 前移的chunks数量
- int _balancedLastTime;
- // 均衡策略(确定要迁移的chunks)
- BalancerPolicy* _policy;
- //初始化,检查balancer 能否链接到servers.该方法可能抛出网络异常
- bool _init();
- /**
- * 收集关于shards及chunks的信息,以及可能需要迁移的chunks
- * @param conn: 指向config server(s)连接
- * @param candidateChunks (IN/OUT): 可能需要迁移的chunks
- */
- void _doBalanceRound( DBClientBase& conn, vector<CandidateChunkPtr>* candidateChunks );
- /**
- * 逐个迁移chunk.并返回最终迁移的chunk数量
- * @param candidateChunks 可能需要迁移的chunks
- * @return number of chunks effectively moved
- */
- int _moveChunks( const vector<CandidateChunkPtr>* candidateChunks );
- /*在config server(s)中标记并前balancer为活动状态.*/
- void _ping( DBClientBase& conn );
- //当configdb中的所有服务均可用时,返回true
- bool _checkOIDs();
- };
可以看出balancer继承自BackgroundJob,所以它是以后台方式运行的。了解了该类的方法和属性之后,下面我们着手看一下mongos主函数中启动balancer.go()的调用流程。因为balancer继承自BackgroundJob,所以还要看一下BackgroundJob里go()方法的执行代码, 如下:
- //background.cpp 线程方式运行下面的jobBody方法
- BackgroundJob& BackgroundJob::go() {
- boost::thread t( boost::bind( &BackgroundJob::jobBody , this, _status ) );
- return *this;
- }
- ////background.cpp. Background object can be only be destroyed after jobBody() ran
- void BackgroundJob::jobBody( boost::shared_ptr<JobStatus> status ) {
- ....
- const string threadName = name();
- if( ! threadName.empty() )
- setThreadName( threadName.c_str() );
- try {
- run();//到这里,mongos开始执行子类balancer中的run方法
- }
- ....
- if( status->deleteSelf )
- delete this;
- }
上面代码最终会将执行流程转到balancer类的run()方法,如下
- void Balancer::run() {
- /* this is the body of a BackgroundJob so if we throw
- here we're basically ending the balancer thread prematurely */
- while ( ! inShutdown() ) {
- if ( ! _init() ) {//检查balancer是否链到config server和其它shard上
- log() << "will retry to initialize balancer in one minute" << endl;
- sleepsecs( 60 );
- continue;
- }
- break;
- }
- //构造链接串信息
- ConnectionString config = configServer.getConnectionString();
- //声明分布式锁
- DistributedLock balanceLock( config , "balancer" );
- while ( ! inShutdown() ) {//一直循环直到程序中断或关闭
- try {
- // 判断chunk均衡功能是否有效
- if ( ! grid.shouldBalance() ) {
- log(1) << "skipping balancing round because balancing is disabled" << endl;
- sleepsecs( 30 );
- continue;
- }
- //从链接池中获取一个链接对象,如无链接则直接创建。更多内容详见connpool.cpp文件的
- //DBClientBase* DBConnectionPool::get(const string& host) 方法.
- ScopedDbConnection conn( config );
- _ping( conn.conn() );//标识链到config server的balancer为活动(live)状态
- if ( ! _checkOIDs() ) {
- uassert( 13258 , "oids broken after resetting!" , _checkOIDs() );
- }
- //重载Shard集合信息(shard 状态)
- Shard::reloadShardInfo();
- //声明balance锁对象balanceLock
- dist_lock_try lk( &balanceLock , "doing balance round" );
- if ( ! lk.got() ) {
- log(1) << "skipping balancing round because another balancer is active" << endl;
- conn.done();
- sleepsecs( 30 ); // no need to wake up soon
- continue;
- }
- log(1) << "*** start balancing round" << endl;
- vector<CandidateChunkPtr> candidateChunks;
- //获取在shard集合中建议迁移的chunk信息(包含要迁移到的目标shard信息)
- _doBalanceRound( conn.conn() , &candidateChunks );
- if ( candidateChunks.size() == 0 ) {//是否有要移动的chunk
- log(1) << "no need to move any chunk" << endl;
- }
- else//开始迁移并返回最终迁移数量 {
- _balancedLastTime = _moveChunks( &candidateChunks );
- }
- log(1) << "*** end of balancing round" << endl;
- conn.done();//将conn放到链接池中(为其它后续操作使用)
- sleepsecs( _balancedLastTime ? 5 : 10 );
- }
- catch ( std::exception& e ) {
- log() << "caught exception while doing balance: " << e.what() << endl;
- // Just to match the opening statement if in log level 1
- log(1) << "*** End of balancing round" << endl;
- sleepsecs( 30 ); // sleep a fair amount b/c of error
- continue;
- }
- }
- }
上面方法中主要是先构造链接串,进而构造连接实例(注:这里使用了链接池的概念,我会在后续章节中专门介绍其实现机制)。之后刷新sharding中的相关信息(确保其有效性),之后调用_doBalanceRound()方法来收集可能要迁移的chunk(s)信息并最终完成迁移(使用_moveChunks方法)。
下面我们就着重看一下这两个方法的具体实现.
首先是_doBalanceRound方法:
- //balance.cpp
- void Balancer::_doBalanceRound( DBClientBase& conn, vector<CandidateChunkPtr>* candidateChunks ) {
- assert( candidateChunks );
- // 1. 通过查询ShardsNS::collections来检查是否有可用sharded集合来均衡chunk
- auto_ptr<DBClientCursor> cursor = conn.query( ShardNS::collection , BSONObj() );
- vector< string > collections;
- while ( cursor->more() ) {
- BSONObj col = cursor->next();
- // sharded collections will have a shard "key".
- if ( ! col["key"].eoo() )
- collections.push_back( col["_id"].String() );
- }
- cursor.reset();
- if ( collections.empty() ) {
- log(1) << "no collections to balance" << endl;
- return;
- }
- //获取一个需要均衡的shard信息列表,表中shard信息包括maxsize, currsiez, drain, hsopsqueued
- vector<Shard> allShards;
- Shard::getAllShards( allShards );
- if ( allShards.size() < 2) {
- log(1) << "can't balance without more active shards" << endl;
- return;
- }
- //获取allShards的相应状态信息交绑定到shardLimitMap相应元素中,该shardLimitMap是一个从shardId到对象(BSONObj)的映射
- map< string, BSONObj > shardLimitsMap;
- for ( vector<Shard>::const_iterator it = allShards.begin(); it != allShards.end(); ++it ) {
- const Shard& s = *it;
- ShardStatus status = s.getStatus();
- //最大值 (单位:兆字节, 0为不限制)
- BSONObj limitsObj = BSON( ShardFields::maxSize( s.getMaxSize() ) <<
- LimitsFields::currSize( status.mapped() ) << //当前时间状态的信息
- hardFields::draining( s.isDraining() ) << //当前的shard是否正在被移除
- LimitsFields::hasOpsQueued( status.hasOpsQueued() )//是否有回写的队列信息
- );
- shardLimitsMap[ s.getName() ] = limitsObj;
- }
- //遍历collections集合,根据均衡策略(balancing policy) ,检查是否有要迁移的chunk信息
- for (vector<string>::const_iterator it = collections.begin(); it != collections.end(); ++it ) {
- const string& ns = *it;//集合的名空间
- map< string,vector<BSONObj> > shardToChunksMap;//从shardId 到chunks 的映射
- cursor = conn.query( ShardNS::chunk , QUERY( "ns" << ns ).sort( "min" ) );
- while ( cursor->more() ) {
- BSONObj chunk = cursor->next();
- //以chunk所属的shard为标识,获取一个chunks的集合来收集位于同一shard的chunk
- vector<BSONObj>& chunks = shardToChunksMap[chunk["shard"].String()];
- chunks.push_back( chunk.getOwned() );
- }
- cursor.reset();
- if (shardToChunksMap.empty()) {
- log(1) << "skipping empty collection (" << ns << ")";
- continue;
- }
- for ( vector<Shard>::iterator i=allShards.begin(); i!=allShards.end(); ++i ) {
- // this just makes sure there is an entry in shardToChunksMap for every shard
- Shard s = *i;
- shardToChunksMap[s.getName()].size();
- }
- //找出要迁移的chunk,包括源及目标(要迁移到的)chunk的起始地址
- CandidateChunk* p = _policy->balance( ns , shardLimitsMap , shardToChunksMap , _balancedLastTime /*number of moved chunks in last round*/);
- if ( p ) candidateChunks->push_back( CandidateChunkPtr( p ) );//存到要均衡的chunk集合中
- }
- }
上面的_doBalanceRound方法主要构造shardLimitsMap,shardToChunksMap这两个实例对象集合(map<>类型),其中:
shardLimitsMap:用于收集shard集合中一些“起数量限制”作用的参数,如maxsize,draining,hasOpsQueued等,因为这几个参数如果超出范围或为true时,相应shard 是不可以提供迁移服务的。
shardToChunksMap:用于收集当前shard中的chunk信息,以便后面的遍历操作。
收集了这些信息之后,通过调用 _policy->balance()方法来找出可能需要迁移的chunk().
#p#
下面就看一下该均衡策略的具体实现(具体内容参见注释):
- //balacer_policy.cpp
- BalancerPolicy::ChunkInfo* BalancerPolicy::balance( const string& ns,
- const ShardToLimitsMap& shardToLimitsMap,
- const ShardToChunksMap& shardToChunksMap,
- int balancedLastTime ) {
- pair<string,unsigned> min("",numeric_limits<unsigned>::max());
- pair<string,unsigned> max("",0);
- vector<string> drainingShards;
- //遍历shard集合,找到min,max的匹配对象,以及draining的Shard信息
- for (ShardToChunksIter i = shardToChunksMap.begin(); i!=shardToChunksMap.end(); ++i ) {
- // 遍历shard,并查看其容量或可用空间是否被耗尽
- const string& shard = i->first;
- BSONObj shardLimits;
- ShardToLimitsIter it = shardToLimitsMap.find( shard );
- if ( it != shardToLimitsMap.end() ) shardLimits = it->second;//获取shard的信息,包括maxsize, currsiez, drain, hsopsqueued
- const bool maxedOut = isSizeMaxed( shardLimits );//shard是否已满
- const bool draining = isDraining( shardLimits );//shard是否移除
- const bool opsQueued = hasOpsQueued( shardLimits );//shard是否有写回队列
- //是否合适接收chunk,满足下面三个条件之一,则视为不合适
- // + maxed out shards
- // + draining shards
- // + shards with operations queued for writeback
- const unsigned size = i->second.size();//获取当前shard里的chunk数
- if ( ! maxedOut && ! draining && ! opsQueued ) {
- if ( size < min.second ) {//如果当前shard中chunk数与min比较,找出最小size的shard
- min = make_pair( shard , size );
- }
- }
- // 检查shard 是否应该迁移(chunk donor)
- // Draining shards 比 overloaded shards优先级低
- if ( size > max.second ) {
- max = make_pair( shard , size );//找出最大size的shard
- }
- if ( draining && (size > 0)) {
- drainingShards.push_back( shard );
- }
- }
- // 如果chunk没有合适的shard接收, 意味着上面循环中都是类以draining等情况
- if ( min.second == numeric_limits<unsigned>::max() ) {
- log() << "no availalable shards to take chunks" << endl;
- return NULL;
- }
- log(1) << "collection : " << ns << endl;
- log(1) << "donor : " << max.second << " chunks on " << max.first << endl;
- log(1) << "receiver : " << min.second << " chunks on " << min.first << endl;
- if ( ! drainingShards.empty() ) {
- string drainingStr;
- joinStringDelim( drainingShards, &drainingStr, ',' );//用逗号将drainingShards连接起来
- log(1) << "draining : " << ! drainingShards.empty() << "(" << drainingShards.size() << ")" << endl;
- }
- // 通过优先级解决不均衡问题.
- const int imbalance = max.second - min.second;//找出shard中最不均衡的size的差距
- const int threshold = balancedLastTime ? 2 : 8;
- string from, to;
- if ( imbalance >= threshold /*临界点*/) {
- from = max.first;//将shard中chunk最多的作为源
- to = min.first;//将shard中chunk最小的作为要迁移的目的地
- }
- else if ( ! drainingShards.empty() ) {
- //对于那些draining的shard,随机取出其中一个
- from = drainingShards[ rand() % drainingShards.size() ];
- to = min.first;
- }
- else {
- // 如已均衡,则返回
- return NULL;
- }
- //找出要迁移的chunk集合的起始位置
- const vector<BSONObj>& chunksFrom = shardToChunksMap.find( from )->second;
- const vector<BSONObj>& chunksTo = shardToChunksMap.find( to )->second;//找出要迁移到的chunk集合目标位置
- BSONObj chunkToMove = pickChunk( chunksFrom , chunksTo );//最终选出(校正)要迁移的chunk的起始位置
- log() << "chose [" << from << "] to [" << to << "] " << chunkToMove << endl;
- //返回上面balaner的操作结果来执行后续的移动chunk操作
- return new ChunkInfo( ns, to, from, chunkToMove );
- }
上面方法通过计算各个shard中的当前chunk数量来推算出那个shard相对较空,并将其放到to(目标shard),之后对可能要迁移的chunk进行校验,这里使用了pickChunk()方法,该方法具体实现如下:
- //balancer_policy.cpp
- //找出需要被迁移的chunk, 这里要考虑to端可能比from端chunks更多的情况
- BSONObj BalancerPolicy::pickChunk( const vector<BSONObj>& from, const vector<BSONObj>& to ) {
- // It is possible for a donor ('from') shard to have less chunks than a recevier one ('to')
- // if the donor is in draining mode.
- if ( to.size() == 0 )//如果目标位置为空,表示可以将from中数据全部迁移过去
- return from[0];
- /**wo='well ordered'. fields must be in same order in each object.
- Ordering is with respect to the signs of the elements
- and allows ascending / descending key mixing.
- @return <0 if l<r. 0 if l==r. >0 if l>r
- */
- //如果要迁移的chunk中最小值与目标位置的最大值相同,表示可以将from中数据全部迁移过去
- if ( from[0]["min"].Obj().woCompare( to[to.size()-1]["max"].Obj() , BSONObj() , false ) == 0 )
- return from[0];
- //如果要迁移的chunk中最大值与目标位置的最小值相同,表示可以将from中最后一个chunk迁移过去
- if ( from[from.size()-1]["max"].Obj().woCompare( to[0]["min"].Obj() , BSONObj() , false ) == 0 )
- return from[from.size()-1];
- return from[0];
- }
完成了校验之后,得到的就是真正要迁移的chunk的启始地址,之后就可以进行迁移了。到这里,我们还要将执行流程跳回到Balancer::run()方法里,看一下最终完成迁移工作的方法movechunk()的实现流程:
- //balance.cpp文件
- int Balancer::_moveChunks( const vector<CandidateChunkPtr>* candidateChunks ) {
- //最终迁移的chunk数
- int movedCount = 0;
- //遍历要迁移chunks并逐一开始迁移
- for ( vector<CandidateChunkPtr>::const_iterator it = candidateChunks->begin(); it != candidateChunks->end(); ++it ) {
- const CandidateChunk& chunkInfo = *it->get();
- //获取当前chunk要使用的db配置信息
- DBConfigPtr cfg = grid.getDBConfig( chunkInfo.ns );
- assert( cfg );
- //声明ChunkManager使用它来
- ChunkManagerPtr cm = cfg->getChunkManager( chunkInfo.ns );
- assert( cm );
- //获取要迁移的chunk起始地址
- const BSONObj& chunkToMove = chunkInfo.chunk;
- ChunkPtr c = cm->findChunk( chunkToMove["min"].Obj() );
- //下面判断执行两次,防止执行split之后,系统在reload 情况下chunk可能出现min,max不一致情况
- if ( c->getMin().woCompare( chunkToMove["min"].Obj() ) || c->getMax().woCompare( chunkToMove["max"].Obj() ) ) {
- // 这里主要防止别处执行 split 操作造成负作用
- cm = cfg->getChunkManager( chunkInfo.ns , true /* reload */);
- assert( cm );
- c = cm->findChunk( chunkToMove["min"].Obj() );
- if ( c->getMin().woCompare( chunkToMove["min"].Obj() ) || c->getMax().woCompare( chunkToMove["max"].Obj() ) ) {
- log() << "chunk mismatch after reload, ignoring will retry issue cm: "
- << c->getMin() << " min: " << chunkToMove["min"].Obj() << endl;
- continue;
- }
- }
- BSONObj res;
- //将chunk, 从当前的shard ,移动到指定的shard,并累加迁移数量
- if ( c->moveAndCommit( Shard::make( chunkInfo.to ) , Chunk::MaxChunkSize , res ) ) {
- movedCount++;
- continue;
- }
- //如迁移不成功,记入日志
- // the move requires acquiring the collection metadata's lock, which can fail
- log() << "balacer move failed: " << res << " from: " << chunkInfo.from << " to: " << chunkInfo.to
- << " chunk: " << chunkToMove << endl;
- //chunk是否达到允许移动的最大尺寸,如果是,则对当前shard执行split操作
- if ( res["chunkTooBig"].trueValue() ) {
- // reload just to be safe
- cm = cfg->getChunkManager( chunkInfo.ns );
- assert( cm );
- c = cm->findChunk( chunkToMove["min"].Obj() );
- log() << "forcing a split because migrate failed for size reasons" << endl;
- res = BSONObj();
- //对当前的shards进行分割(获取适合的分割点),该方法有些复杂,我会抽时间写文章介绍
- c->singleSplit( true , res );
- log() << "forced split results: " << res << endl;
- // TODO: if the split fails, mark as jumbo SERVER-2571
- }
- }
- return movedCount;
- }
上面代码就是依次遍历要迁移的chunk,分别根据其ns信息获取相应的ChunkManager(该类主要执行chunk的管理,比如CRUD等),之后就通过该ChunkManager找出当前chunk中最小的值(min:参见chunk.h文件,我这里把min,max理解为当前chunk中最小和最大记录对象信息)chunk信息,并开始迁移。
按照惯例,这里还是用一个时序列来大体回顾一下balancer的执行流程,如下:
好了,今天的内容就先到这里了。
原文链接:http://www.cnblogs.com/daizhj/archive/2011/05/23/mongos_balancer_source_code.html
【编辑推荐】
- Mongodb源码分析之Mongos分析
- Mongodb源码分析--内存文件映射(MMAP)
- 走进MongoDB的世界 展开MongoDB的学习之旅
- 浅析Mongodb源码之游标Cursor
- 野心勃勃的NoSQL新贵 MongoDB应用实战