C语言编程开发中用好位操作符

开发 后端
位操作,在C语言编程中算是基础知识。但是,如果位操作能够用好的话,可以有效地提高程序运行的效率。下面让我们一起来看。

C语言编程中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。

1. C语言中的位操作符

因为C语言的设计目的是取代汇编语言,所以它必须支持汇编语言所具有的运算能力,所以C语言支持全部的位操作符(Bitwise Operators)。位操作是对字节或字中的位(bit)进行测试、置位或移位处理,在对微处理器的编程中,特别适合对寄存器、I/O端口进行操作。因而本节将对此作比较详细地介绍。

6种位操作符的形式与含义如下:

& :按位“与”(AND);

| :按位“或”(OR);

^ :按位“异或”(XOR);

~ :“取反” (NOT);

》 :数据右移;

《 :数据左移;

1) 按位“与”运算

按位“与”运算符 & 的作用是对运算符两侧以二进制表达的操作数按位分别进行“与”运算,而这一运算是以数中相同的位(bit)为单位的。操作的规则是:仅当两个操作数都为1时,输出的结果才为1,否则为0。

例如:

a = 0x88,b = 0x81,则a & b 的运算结果如下:

0x88 1000 1000 a数

& 0x81 1000 0001 b数

= 1000 0000

其中,& 运算符让a数0x88与B数0x81的1位与1位、2位与2位……7位与7位分别相“与”。由于“与”运算的操作规则是,两个操作数中各位只要有1个为0,其结果中对应的位就为0。而a数与b数中只有***位(第7位)均为1,因而该位结果为1,其它各位结果都为0。

通常我们可把按位“与”操作 & 作为关闭某位(即将该位置0)的手段,例如我们想要关闭a数中的第3位,而又不影响其它位的现状,可以用一个数0xF7,即二进制数1111 0111去与a数作按位“与”运算:

0x88 1000 1000 a数

& 0xF7 1111 0111 屏蔽数

= 1000 0000

注意,这个数除第3位为0外,其它各位均为1,操作的结果只会将a数中的第3位置0,而a数的其它位不受影响。也就是说,若需要某个数的第n位关闭,只需要将该数与另一个数按位相与,另一个数除了相应的第n位为0外,其它各位都为1,以起到对其它各位的屏蔽作用。

上面的运算可以用a = a &(0xF7) 来表示,也可以用a & =(0xF7) 来表达。这两个表达式功能是相同的(见上节“复合赋值运算符”部分),但在源程序代码中常常见到的以第二种形式为多。

2) 按位“或”运算

按位“或” 运算符 | 的作用是对运算符两侧以二进制表达的操作数按位分别进行“或”运算,而这一运算是以数中相同的位(bit)为单位的。操作的规则是:仅当两个操作数都为0时,输出的结果才为0,否则为1。

例如:

a = 0x88,b = 0x81,则a | b 的运算结果如下:

0x88 1000 1000 a数

| 0x81 1000 0001 b数

= 1000 1001

通常我们可把按位“与”操作 & 作为置位(即将该位置1)的手段,例如我们想要将a数中的第0位和1位置1,而又不影响其它位的现状,可以用一个数0x03,即二进制数00000011去与a数作按位“或”运算:

0x88 1000 1000 a数

| 0x03 0000 0011 屏蔽数

= 1000 1011

注意,这个数除第0、1位为1外,其它各位均为0,操作的结果只会将a数中的第0、1位置0,而a数的其它位不受影响。也就是说,若需要某个数的第n位置1,只需要将该数与另一个数按位相“或”,另一个数除了相应的第n位为1外,其它各位都为0,以起到对其它各位的屏蔽作用。上面的运算可以用a = a | (0xF7) 来表示,也可以用a | =(0xF7) 来表达。

3) 按位“异或”运算

按位“异或”运算符 ^ 的作用是对运算符两侧以二进制表达的操作数按位分别进行“异或”运算,而这一运算是以数中相同的位(bit)为单位的。异或运算操作的规则是:仅当两个操作数不同时,相应的输出结果才为1,否则为0。

例如:

a = 0x88,b = 0x81,则a ^ b 的运算结果如下:

0x88 1000 1000 a数

^ 0x81 1000 0001 屏蔽数

= 0000 1001

按位“异或”运算 ^ 具有一些特殊的应用,介绍如下:

① 按位“异或”运算可以使特定的位取反

例如:我们想让a数中的***位和***位取反,只要用0x81,即二进制数10000001去与它作按位“异或”运算,其运算结果同上式。经过操作后,***位的值已经由1变0,而***位的值也已经由0变1,起到了使这两位翻转的效果。其它位的状态保持不变。

可以看到,这个数除***位、***位为1外,其它各位均为0,操作的结果只会将a数中的第0、7位取反,而a数的其它位不受影响。也就是说,若需要某个数的第n位取反,只需要将该数与另一个数按位相“异或”,另一个数除了相应的第n位为1外,其它各位都为0,以起到对其它各位的屏蔽作用。上面的运算可以用a = a ^ (0x81) 来表示,也可以用a ^ =(0x81) 来表达。

② 直接交换两个变量的值

例如,若有变量a = 3,b = 4,想要交换它们的值,可以做如下一组操作:

a ^ = b

b ^ = a

a ^ = b

首先,a ^ = b:

a 0000 0011

^ b 0000 0100

a = 0000 0111

其次,b ^ = a:

b 0000 0100

^ a 0000 0111

b = 0000 0011

***,a ^ = b:

a 0000 0111

^ b 0000 0011

a = 0000 0100

这样,a、b两个变量中的值就进行了对调。

4)“取反”运算

“取反”运算符 ~ 的作用是将各位数字取反:所有的0置为1,1置为0。例如:

1001 0110 取反后为0110 1001。

5) 数据右移

数据右移操作符 》 将变量的各位按要求向右移动若干位。右移语句的通常形式是:

variable 》右移位数

如:a = 1111 0000;进行 a = a 》 2 操作后,a = 0011 1100。

6) 数据左移

数据左移操作符 《 将变量的各位按要求向左移动若干位。左移语句的通常形式是:

variable 《 左移位数

如:a = 1111 0000;进行 a = a 《 2 操作后,a =1100 0000。

无论是左移还是右移,当某位从一端移出时,另一端出现的空白将以从外面移入的0(某些计算机是送1,详细内容请查阅相应C编译程序用户手册)来补充。这说明,移位不同于循环,从一端移出的位并不送回到另一端去,移去的位永远丢失了,同时在另一端只能补上相应位数的0。

移位操作可用于整数的快速乘除运算,左移一位等效于乘2,而右移一位等效于除以2。

如:x = 7, 二进制表达为:0000 0111,

x 《 1 0000 1110,相当于: x =2*7=14,

x 《 3 0111 0000,相当于: x=14*2*2*2=112

x 《 2 1100 0000, x= 192

在作第三次左移时,其中一位为1的位移到外面去了,而左边只能以0补齐,因而便不等于112*2*2=448,而是等于192了。当x按刚才的步骤反向移动回去时,就不能返回到原来的值了,因为左边丢掉的一个1,再也不能找回来了:

x 》 2 0011 0000, x=48

x 》 3 0000 0110 x=48/8=6

x 》 1 0000 0011 x=6/2=3

移位操作还可以配合其它位操作夫对寄存器或者数据I/O接口的各个位进行设置、检测,具体方法见下一节。

#p#

2.位操作符的一些实用方法介绍

1) 学会应用复合运算符

如前面所介绍的,位操作运算符可以和赋值运算符“=”一起组成复合运算符。即如下5个:

《= 、》=、&=、^=、|=

其中,x 《 = y,相当于x = x 《 y;

x 》 = y,相当于x = x 》 y;

x & = y, 相当于x = x & y;

x ^ = y, 相当于x = x ^ y;

x | = y, 相当于x = x | y;

学会在C语言中使用复合运算符,可以简化源程序,优化目标程序。

2) C 语言中一些常见的位操作方法

由于我们此处学习C 语言的目的主要是为了开发微控制器的控制程序,为此我们特别关注一下对MPU的寄存器、I/O中某一位的操作语句。假如要对PORTA(端口A)的某些位进行赋值、置0、置1、取反、测试,可能会用到如一下一些语句:

① PORTA = 0x87

给整个PORTA赋值,作用是将1000 0111这个数赋予PORTA,即让PORTA的第0、1、2和7位置1,其它位清0。

② PORTA = (1《7)

给整个PORTA赋值,作用等价于PORTA = 0x80,将1000 0000这个数赋予PORTA,将指定的第7位置1,其余各位置0。只不过这里包括了两个步骤,即先是括号中的1《7操作,表示将0x01这个数左移7位,其值变成0x80,再将它赋予PORTA。

③ PORTA = (1《7) | (1《 3) | (1《 2)

给整个PORTA赋值,作用与②中的操作相同,但是是分别对7、3、2位置1,而将其它各位均置0。它先要分别对三个括号中给定的值进行移位操作,再将它们按位“与”,***将值赋予PORTA。即:

1000 0000 (1《 7)

0000 1000 (1《 3)

| 0000 0100 (1《 2)

PORTA = 1000 1100

④ PORTA & = 0x80

使PORTA中的指定位清0,等价于PORTA =PORTA & (0x80)。由于0x80的二进制表达形式为1000 0000,利用其***位为1,其它各位均为0的特性,作为一个模板将其等于1的那些位(如本例中的第7位)屏蔽起来,使之保持不变,而将其它位清0(不管原来为0还是为1)。因为PORTA与0x80按位“与”的结果如下:

PORTA = 0x87 1000 0111

& 0x80 1000 0000

= 1000 0000

操作后,第7位的原来值1被保留,其它各个位被清0,其中***的3位原来为1,现在均为0了。

⑤ PORTA & = (1《7)

它也等价于PORTA & = 0x80:这里也包括了两个步骤,即先执行括号中的1《7操作,将0x01左移7位,其值变成0x80,再将它与PORTA做按位“与”。

该操作将除指定的第7位以外的各个位清0。

⑥PORTA & = ~ (1 《 7)

该指令在等号后面加了取反符号 ~ 。与上一条操作的区别是,在与PORTA做按位“与”前,还将0x80先行取反,将1000 0000转换成0111 1111,再做按位“与”操作。这样的操作结果是将指定的第7位清零,其它各位保持不变。

⑦ PORTA | = (1《7)

等价于PORTA = PORTA | (1《7),这里也是先执行括号中的1《7操作,将0x01左移7位,其值变成0x80,再将它与PORTA做按位“或”。

若操作前PORTA的初始值为0x07,则:

PORTA 0000 0111

| 0x80 1000 0000

PORTA = 1000 0111

该操作将***位置1,其它各位保持不变。

要注意的是,这条指令与PORTA = (1《7) 相比,虽然都可以使指定的某一位置1,但它们有着不同之处。PORTA = (1《7) 执行后,虽然某一位被置1了,但其它的位却被修改了,即不管PORTA的初始值为什么,原来为1的位都会被0覆盖,执行的结果总是为1000 0000。而本条指令却可以将其它位屏蔽起来,在改变要设置的那一位的同时,并不改变其它位的状态。

3) 巧用C语言中的位操作方法

① 将寄存器的指定位置1或清0

在实际应用中,经常利用 PORTA | = (1《 n) 这条指令将寄存器的任意位置1,而又不影响其它位的现有状态。比如说,你如果想将第4位置1,就使用 PORTA | = (1《 4) 就行了。当然,也可以使用 PORTA | = (1《 7) | (1《 4 ) | (1《 0) 这样的指令一次将设第8、5和1位置1,但又不影响到其它位的状态。

在实际应用中,经常利用 PORTA & = ~ (1《 n) 这条指令将寄存器的任意位清0,而又不影响其它位的现有状态。比如说,你如果想将第4位清0,就使用 PORTA & = ~ (1《 4) 就行了。

在启动nRF905芯片向空中发送数据时,采用以下函数:

void nrf905_TxSend(void)

{

PORTD|=(1《TRXCE);

DelayUs(1);//>10us

PORTD &= ~(1《TRXCE);

}

其中让PORTD中控制TRX_CE信号的那一位先置1,再清0,输出一高一低的脉冲信号,就在一个脉冲周期内,完成了一次数据发送。因为在程序的开头已经定义TRX_CE信号为PD6位,即TRXCE = 6,因而上面两行程序等价于:

PORTD|=(1《 6);

PORTD &= ~(1《 6);

② 测试寄存器指定位的状态

nRF905在接收数据过程中,要分别发出CD、AM和DR信号,而MPU也要分别对这些位进行检测,看它们是否变高,若变高,就执行下一步,否则就跳出分支,返回主程序。下面就是对这些位进行检测的一段函数:

void nrf905_RxRecv(void)

{

while ((PIND&(1《CD))==0); //CD引脚置1,检测到载波信号

while ((PIND&(1《AM))==0); //一般先AM=1指示地址匹配对

while ((PIND&(1《DR))==0); //DR=1时表示数据接收对而且Crc正确

//nrf905已经接收到数据

nrf905_ReadData(0);//读出nrf905中的数据

}

其中有:

while ((PIND&(1《DR))= =0); 或者:

if ((PIND&(1《DR))= =0); 语句,其功能就是对寄存器指定的位进行测试。

括号中是一个等式,我们将其拆分开介绍它的作用:

1《DR:

DR在程序的开始已经被定义为2,(1《DR)也就是(1《 2),表示将0x01左移2位,结果为0000 0100;

PIND& (1《DR):

PIND为PORTD端口的8位引脚的值,PIND& (1《DR)表示让它和(1《DR) 亦即和0000 0100按位相“与”。不管PIND的其它位为何值,由于和0相与,这些位的结果都为0,我们关心的只有第2位的状态。由于该位与1相与,只要DR为高,就会有:

PIND xxx x1xx

& 0000 0100

结果 = 0000 0100

结果的第二位的状态为1,也就是整个表达式 (PIND&(1《DR))= = 0不成立,语句的逻辑值为0。

若DR为低,则有:

PIND xxxx x0xx

& 0000 0100

结果 = 0000 0000

也就是整个表达式的结果为0,(PIND&(1《DR))= = 0成立,语句的逻辑值为1。根据括号中逻辑值的情况,while 或者if 语句再决定程序的流向。

本文介绍了,位操作符和一些位操作符的实用方法。希望通过本文的介绍,能对你有所帮助。

【编辑推荐】

  1. C++位操作基本含义详解
  2. 3.3.5 位操作类指令(17条)
  3. Scala的数学运算、关系和逻辑操作及位操作符
  4. 3.1.3 位操作:布尔值编码
责任编辑:于铁 来源: 中国IT实验室
相关推荐

2009-08-19 17:26:28

C# 操作符

2023-10-12 09:58:45

操作符C++

2010-01-28 11:16:28

C++操作符

2010-08-27 09:06:49

F#

2010-01-27 11:00:17

C++操作符

2009-08-18 18:06:54

C#操作符重载

2010-01-21 09:53:23

C++操作符

2009-08-19 17:20:22

C# 操作符

2010-01-19 13:32:20

C++操作符

2010-07-14 14:55:07

Perl操作符

2009-08-19 17:13:15

C# 操作符基础知识

2009-08-19 17:38:17

C# 操作符分类

2009-08-18 17:55:20

C#操作符重载

2009-08-18 17:42:12

C#操作符重载

2021-10-31 18:59:55

Python操作符用法

2010-02-05 10:30:02

C++操作符重载

2009-08-21 09:30:05

is和as操作符

2010-02-03 10:23:47

C++操作符重载

2009-07-21 09:31:00

Scala数学运算逻辑操作位操作符

2009-07-21 09:31:00

Scala操作符
点赞
收藏

51CTO技术栈公众号