51CTO曾在Java 7 下一代Java开发技术详解专题里对“JDK 7 I/O新功能”有过简单地介绍,其实早在2000年的时候,Sun公司就启动了JSR 51:为Java平台开发新的I/O API,直接访问操作系统底层输入/输出操作以提高应用程序的性能,首次引入这套API是在J2SE 1.4中,根据维基百科的新I/O词条显示,新I/O(NIO)由下列API组成:
◆ 原始类型数据缓冲
◆ 字符集编码和解码
◆ 通道,新的原始I/O抽象
◆ 支持上锁和内存映射的文件接口,文件最大支持Integer.MAX_VALUE字节(2GB)
◆ 为可扩展服务器提供的多路复用,无阻塞I/O设施(基于选择器和键)
JSR 203(NIO.2)除了解决JSR 51遗留下来的问题外,还为Java平台提供了更多新的I/O API,NIO.2解决了java.awt.File文件系统接口存在的重大问题,引入了异步I/O,并完成了未包括在JSR 51中的功能,下面列出了包含在JSR 203中的主要组件:
◆ 新的文件系统接口,支持大块访问文件属性,更改通知,绕开文件系统指定的API,也是可插拔文件系统实现的服务提供者接口。
◆ 对套接字和文件同时提供了异步I/O操作的API。
◆ JSR 51中定义的完整的套接字通道功能,此外还包括绑定,选项配置和多播数据报的支持。
新的文件系统接口
Java的File类存在重大问题,例如,操作出错时,delete()和mkdir()方法返回一个状态码而不是一个异常,没有办法获知失败的原因,此外还包括以下问题:
◆ File没有提供方法来检测符号链接,要知道为什么检测符号链接很重要,以及如何解决这个问题的办法,请参考Patrick的文章“在Java中如何处理文件系统软链接/符号链接”和“Java中的链接/别名/快捷方式”。
◆ File提供的方法只能访问部分文件属性,不能访问文件权限和访问控制列表。
◆ File没有提供方法一次访问文件的所有属性(如文件的修改时间和它的类型),因为文件系统需要为每个属性执行查询请求,可能存在性能问题。
◆ File的list()和listFiles()方法返回文件名和目录名的数组,但不支持大目录,通过网络展示大目录清单时,调用list()/listFiles()方法可能会使当前的线程阻塞相当长一段时间,而在服务器端,虚拟机可能会耗尽内存。
◆ File没有提供复制和移动文件的方法,虽然File提供了一个renameTo()方法在某些时候可以用来移动文件,但它的行为与平台关系紧密,即在不同平台上的行为是不一致的,根据renameTo()的文档说明,这个方法不能在文件系统之间移动文件,它可能不是原子的,如果目标路径下已存在同名文件,这个操作可能不会成功。
◆ File也没有提供改变通知方法,需要应用程序自己实现,因此导致应用程序的性能下降,例如,服务器需要确定什么时候往目录中添加了一个新的JAR文件,它需要实时监视这个目录,因为服务器后台线程需要频繁读取文件系统,因此性能会有所下降。
◆ File也不允许开发人员引入他们自己的文件系统访问功能,例如,开发人员可能想将文件系统存储到一个zip文件中,或创建一个内存文件系统。
NIO.2引入了新的文件系统接口,除了解决上述存在的问题外,还引入了更多的功能,这个接口由位于java.nio.file,java.nio.file.attribute和java.nio.file.spi包中的类和其它类型组成。
这些包提供了多个切入点,其中一个切入点就是java.nio.file.Paths类,它提供了两个方法返回一个java.nio.file.Path实例:
◆ public static Path get(String path) – 它通过转换给定路径字符串返回给这个实例构造一个Path实例。
◆ public static Path get(URI uri) -它通过转换给定路径的URI(统一资源定位符)返回给这个实例构造一个Path实例。
与传统的基于File的代码互操作:
File类提供了一个public Path toPath()方法,它可以将一个File实例转换成一个Path实例。
当你创建了一个Path实例后,你就可以使用这个实例执行许多路径操作(如返回路径的一部分,连接两个路径)和许多文件操作(如删除,移动和复制文件)。
为了不将问题复杂化,我就不深入讲解Path了,这里我用一段代码简单地演示一下以前的get()方法和Path的delete()方法。
清单1. InformedDelete.java
- // InformedDelete.java
- import java.io.IOException;
- import java.nio.file.DirectoryNotEmptyException;
- import java.nio.file.NoSuchFileException;
- import java.nio.file.Path;
- import java.nio.file.Paths;
- public class InformedDelete
- {
- public static void main (String [] args)
- {
- if (args.length != 1)
- {
- System.err.println ("usage: java InformedDelete path");
- return;
- }
- // Attempt to construct a Path instance by converting the path argument
- // string. If unsuccessful (you passed an empty string as the
- // command-line argument), the get() method throws an instance of the
- // unchecked java.nio.file.InvalidPathException class.
- Path path = Paths.get (args [0]);
- try
- {
- path.delete (); // Attempt to delete the path.
- }
- catch (NoSuchFileException e)
- {
- System.err.format ("%s: no such file or directory%n", path);
- }
- catch (DirectoryNotEmptyException e)
- {
- System.err.format ("%s: directory not empty%n", path);
- }
- catch (IOException e)
- {
- System.err.format ("%s: %s%n", path, e);
- }
- }
- }
InformedDelete调用Path的delete()方法解决了File的delete()方法不能确定失败原因的问题,当Path的delete()当的检测到操作失败时,它会根据情况抛出适当的异常,如:
◆ 如果文件不存在,抛出java.nio.file.NoSuchFileException异常。
◆ 如果文件是一个目录不能删除,抛出java.nio.file.DirectoryNotEmptyException异常,因为这个目录下可能还包括一个空目录。
◆ 如果遇到其他I/O问题,则抛出java.io.IOException的子类异常,例如,如果文件是只读的,抛出java.nio.file.AccessDeniedException异常。
#p#
异步I/O
JSR 51引入了多路复用I/O(无阻塞I/O和选择就绪的结合)使创建高可扩展服务器变得更加容易,本质上是这样的,客户端代码用一个选择器注册一个套接字通道,当通道准备好可以开始I/O操作时发出通知。
如果要深入研究多路复用I/O,请阅读Ron Hitchens的《Java NIO》一书。
JSR 203还引入了异步I/O,它也被用来建立高可扩展服务器,和多路复用I/O不同,异步I/O是让客户端启动一个I/O操作,当操作完成后向客户端发送一个通知。
异步I/O是通过以下位于java.nio.channels包中的接口和类实现的,它们的名称前面都加了Asynchronous前缀:
◆ AsynchronousChannel – 标识一个支持异步I/O的通道。
◆ AsynchronousByteChannel – 标识一个支持读写字节的异步通道,这个接口扩展了AsynchronousChannel。
◆ AsynchronousDatagramChannel – 标识一个面向数据报套接字异步通道,这个类实现了AsynchronousByteChannel。
◆ AsynchronousFileChannel – 标识一个可读,写和操作文件的异步通道,这个类实现了AsynchronousChannel。
◆ AsynchronousServerSocketChannel – 标识一个面向流监听套接字的异步通道,这个类实现了AsynchronousChannel。
◆ AsynchronousSocketChannel – 标识一个面向流连接套接字的异步通道,这个类实现了AsynchronousByteChannel。
◆ AsynchronousChannelGroup – 标识一个用于资源共享的异步通道组。
AsynchronousChannel文档指定了两种形式的异步I/O操作:
◆ Future operation(...)
◆ void operation(... A attachment, CompletionHandler handler)
operation列举I/O操作(如读,写),V是操作的结果类型,A是附加给操作的对象类型。
第一种形式需要你调用java.util.concurrent.Future方法检查操作是否完成,等待完成和检索结果,清单2的代码演示了这样一个示例。
清单2. AFCDemo1.java
- // AFCDemo1.java
- import java.io.IOException;
- import java.nio.ByteBuffer;
- import java.nio.channels.AsynchronousFileChannel;
- import java.nio.file.Path;
- import java.nio.file.Paths;
- import java.util.concurrent.Future;
- public class AFCDemo1
- {
- public static void main (String [] args) throws Exception
- {
- if (args.length != 1)
- {
- System.err.println ("usage: java AFCDemo1 path");
- return;
- }
- Path path = Paths.get (args [0]);
- AsynchronousFileChannel ch = AsynchronousFileChannel.open (path);
- ByteBuffer buf = ByteBuffer.allocate (1024);
- Future<Integer> result = ch.read (buf, 0);
- while (!result.isDone ())
- {
- System.out.println ("Sleeping...");
- Thread.sleep (500);
- }
- System.out.println ("Finished = "+result.isDone ());
- System.out.println ("Bytes read = "+result.get ());
- ch.close ();
- }
- }
调用AsynchronousFileChannel's public static AsynchronousFileChannel open(Path file, OpenOption... options)方法打开file参数进行读取,然后创建了一个字节缓冲区存储读取操作的结果。
接下来调用public abstract Future read(ByteBuffer dst, long position)方法异步读取文件的前1024个字节,这个方法返回一个Future实例代表这个操作的结果。
调用read()方法后,进入一个表决循环,重复调用Future的isDone()方法检查操作是否完成,一直等到读操作结束,最后调用Future的get()方法返回读取到的字节大小。
第二种形式需要你指定java.nio.channels.CompletionHandler,并实现下面的方法使用前面操作返回的结果,或是了解操作为什么失败,并采取适当的行动:
◆ 当操作完成时调用void completed(V result, A attachment),这个操作的结果是由result标识的,附加给操作的对象是由attachment标识的。
◆ 当操作失败时调用void failed(Throwable exc, A attachment),操作失败的原因是由exc标识的,附加给操作的对象是由attachment标识的。
#p#
我创建了一个程序演示创建和接收读操作状态的通知,其代码如清单3所示。
清单3. AFCDemo2.java
- // AFCDemo2.java
- import java.io.IOException;
- import java.nio.ByteBuffer;
- import java.nio.channels.AsynchronousFileChannel;
- import java.nio.channels.CompletionHandler;
- import java.nio.file.Path;
- import java.nio.file.Paths;
- public class AFCDemo2
- {
- static Thread current;
- public static void main (String [] args) throws Exception
- {
- if (args.length != 1)
- {
- System.err.println ("usage: java AFCDemo1 path");
- return;
- }
- Path path = Paths.get (args [0]);
- AsynchronousFileChannel ch = AsynchronousFileChannel.open (path);
- ByteBuffer buf = ByteBuffer.allocate (1024);
- current = Thread.currentThread ();
- ch.read (buf, 0, null,
- new CompletionHandler<Integer, Void> ()
- {
- public void completed (Integer result, Void v)
- {
- System.out.println ("Bytes read = "+result);
- current.interrupt ();
- }
- public void failed (Throwable exc, Void v)
- {
- System.out.println ("Failure: "+exc.toString ());
- current.interrupt ();
- }
- });
- System.out.println ("Waiting for completion");
- try
- {
- current.join ();
- }
- catch (InterruptedException e)
- {
- }
- System.out.println ("Terminating");
- ch.close ();
- }
- }
上面的代码调用AsynchronousFileChannel's public abstract void read(ByteBuffer dst, long position, A attachment, CompletionHandler handler)方法异步读取前1024字节。
虽然我们只演示了单一的读操作,但attachment部分也很重要,上面的代码演示了传递一个null给read()方法,并指定附加类型为Void。
完整的套接字通道功能
JSR 51的DatagramChannel,ServerSocketChannel和SocketChannel类没有完整抽象一个网络套接字,为了绑定通道的套接字,或为了获得/设置套接字选项,你必须先调用每个类的socket()方法检索对等套接字。
JSR 51生效时没有时间定义完整的套接字通道API,因此形成了套接字通道和套接字API混合的局面,JSR203引入新的java.nio.channels.NetworkChannel接口解决了这个问题。
NetworkChannel提供了将套接字绑定到本地地址,返回绑定地址,以及获得/设置套接字选项的方法,这个接口是通过同步和异步套接字类实现的,不再需要调用socket()方法。
JSR 203也引入了新的java.nio.channels.MulticastChannel接口,它为DatagramChannel提供了IP多播的支持,以及对应的异步支持。
总结
本系列文章介绍了即将发布的JDK 7包含的一些新特性,新的里程碑版本可能很快就会发布,你现在就可以尝试一下这些新特性,也许Oracle/Sun将会增加更多的新特性,如JWebPane浏览器组件,因为之前Sun就曾用闭包让我们惊讶过一次了。
关于Java 7的更多内容,欢迎访问51CTO推荐专题:Java 7 下一代Java开发技术详解
【JDK 7相关内容推荐】