C# 泛型接口的实用性:为泛型集合类或表示集合中项的泛型类定义接口通常很有用。对于泛型类,使用泛型接口十分可取,例如使用 IComparable﹤T﹥ 而不使用 IComparable,这样可以避免值类型的装箱和取消装箱操作。.NET Framework 2.0 类库定义了若干新的泛型接口,以用于 System.Collections.Generic 命名空间中新的集合类。将接口指定为类型参数的约束时,只能使用实现此接口的类型。下面的代码示例显示从 GenericList﹤T﹥ 类派生的 SortedList﹤T﹥ 类。SortedList﹤T﹥ 添加了约束 where T : IComparable﹤T﹥。这将使 SortedList﹤T﹥ 中的 BubbleSort 方法能够对列表元素使用泛型 CompareTo 方法。在此示例中,列表元素为简单类,即实现 IComparable﹤Person﹥ 的 Person。
C# 泛型接口代码
- //Type parameter T in angle brackets.
- public class GenericList﹤T﹥ :
- System.Collections.Generic.IEnumerable﹤T﹥
- {
- protected Node head;
- protected Node current = null;
- // Nested class is also generic on T
- protected class Node
- {
- public Node next;
- private T data; //T as private member datatype
- public Node(T t) //T used in non-generic constructor
- {
- next = null;
- data = t;
- }
- public Node Next
- {
- get { return next; }
- set { next = value; }
- }
- public T Data //T as return type of property
- {
- get { return data; }
- set { data = value; }
- }
- }
- public GenericList() //constructor
- {
- head = null;
- }
- public void AddHead(T t) //T as method parameter type
- {
- Node n = new Node(t);
- n.Next = head;
- head = n;
- }
- // Implementation of the iterator
- public System.Collections.Generic.IEnumerator﹤T﹥ GetEnumerator()
- {
- Node current = head;
- while (current != null)
- {
- yield return current.Data;
- current = current.Next;
- }
- }
- // IEnumerable﹤T﹥ inherits from IEnumerable, therefore this class
- // must implement both the generic and non-generic versions of
- // GetEnumerator. In most cases, the non-generic method can
- // simply call the generic method.
- System.Collections.IEnumerator
- System.Collections.IEnumerable.GetEnumerator()
- {
- return GetEnumerator();
- }
- }
- public class SortedList﹤T﹥ :
- GenericList﹤T﹥ where T : System.IComparable﹤T﹥
- {
- // A simple, unoptimized sort algorithm that
- // orders list elements from lowest to highest:
- public void BubbleSort()
- {
- if (null == head || null == head.Next)
- {
- return;
- }
- bool swapped;
- do
- {
- Node previous = null;
- Node current = head;
- swapped = false;
- while (current.next != null)
- {
- // Because we need to call this method, the SortedList
- // class is constrained on IEnumerable﹤T﹥
- if (current.Data.CompareTo(current.next.Data) ﹥ 0)
- {
- Node tmp = current.next;
- current.next = current.next.next;
- tmp.next = current;
- if (previous == null)
- {
- head = tmp;
- }
- else
- {
- previous.next = tmp;
- }
- previous = tmp;
- swapped = true;
- }
- else
- {
- previous = current;
- current = current.next;
- }
- }
- } while (swapped);
- }
- }
- // A simple class that implements
- //IComparable﹤T﹥ using itself as the
- // type argument. This is a common
- // design pattern in objects that
- // are stored in generic lists.
- public class Person : System.IComparable﹤Person﹥
- {
- string name;
- int age;
- public Person(string s, int i)
- {
- name = s;
- age = i;
- }
- // This will cause list elements
- // to be sorted on age values.
- public int CompareTo(Person p)
- {
- return age - p.age;
- }
- public override string ToString()
- {
- return name + ":" + age;
- }
- // Must implement Equals.
- public bool Equals(Person p)
- {
- return (this.age == p.age);
- }
- }
- class Program
- {
- static void Main()
- {
- //Declare and instantiate a new generic SortedList class.
- //Person is the type argument.
- SortedList﹤Person﹥ list = new SortedList﹤Person﹥();
- //Create name and age values to initialize Person objects.
- string[] names = new string[]
- {
- "Franscoise",
- "Bill",
- "Li",
- "Sandra",
- "Gunnar",
- "Alok",
- "Hiroyuki",
- "Maria",
- "Alessandro",
- "Raul"
- };
- int[] ages = new int[] { 45, 19, 28,
- 23, 18, 9, 108, 72, 30, 35 };
- //Populate the list.
- for (int x = 0; x ﹤ 10; x++)
- {
- list.AddHead(new Person(names[x], ages[x]));
- }
- //Print out unsorted list.
- foreach (Person p in list)
- {
- System.Console.WriteLine(p.ToString());
- }
- System.Console.WriteLine("Done with unsorted list");
- //Sort the list.
- list.BubbleSort();
- //Print out sorted list.
- foreach (Person p in list)
- {
- System.Console.WriteLine(p.ToString());
- }
- System.Console.WriteLine("Done with sorted list");
- }
- }
可将多重接口指定为单个类型上的约束,如下所示:
C# 泛型接口代码
- class Stack﹤T﹥ where T : System.IComparable﹤T﹥, IEnumerable﹤T﹥
- {
- }
一个接口可定义多个类型参数,如下所示:
C# 泛型接口代码
- interface IDictionary﹤K, V﹥
- {
- }
类之间的继承规则同样适用于接口:
C# 泛型接口代码
- interface IMonth﹤T﹥ { }
- interface IJanuary : IMonth﹤int﹥ { } //No error
- interface IFebruary﹤T﹥ : IMonth﹤int﹥ { } //No error
- interface IMarch﹤T﹥: IMonth﹤T﹥ { }//No error
- //interface IApril﹤T﹥ : IMonth﹤T, U﹥ {} //Error
如果泛型接口为逆变的,即仅使用其类型参数作为返回值,则此泛型接口可以从非泛型接口继承。在 .NET Framework 类库中,IEnumerable﹤T﹥ 从 IEnumerable 继承,因为 IEnumerable﹤T﹥ 仅在 GetEnumerator 的返回值和当前属性 getter 中使用 T。
具体类可以实现已关闭的构造接口,如下所示:
C# 泛型接口代码
- interface IBaseInterface﹤T﹥ { }
- class SampleClass : IBaseInterface﹤string﹥ { }
只要类参数列表提供了接口必需的所有参数,泛型类便可以实现泛型接口或已关闭的构造接口,如下所示:
C# 泛型接口代码
- interface IBaseInterface1﹤T﹥ { }
- interface IBaseInterface2﹤T, U﹥ { }
- class SampleClass1﹤T﹥ :
- IBaseInterface1﹤T﹥ { }//No error
- class SampleClass2﹤T﹥ :
- IBaseInterface2﹤T, string﹥ { }//No error
对于泛型类、泛型结构或泛型接口中的方法,控制方法重载的规则相同。
C# 泛型接口的相关内容就向你介绍到这里,希望对你了解和学习C# 泛型接口有所帮助。
【编辑推荐】