由于数据挖掘能带来显著的经济效益,它在电子商务中(特别是金融业、零售业和电信业)应用也越来越广泛。
在金融领域,管理者可以通过对客户偿还能力以及信用的分析,进行分类,评出等级。从而可减少放贷的麻木性,提高资金的使用效率。同时还可发现在偿还中起决定作用的主导因素,从而制定相应的金融政策。更值得一提的是通过对数据的分析还可发现洗黑钱以及其它的犯罪活动。
在零售业,数据挖掘可有助于识别顾客购买行为,发现顾客购买模式和趋势,改进服务质量,取得更好的顾客保持力和满意程度,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。
电信业已经迅速地从单纯的提供市话和长话服务演变为综合电信服务,如语音、传真、寻呼、移动电话、图像、电子邮件、计算机和WEB数据传输以及其它的数据通 信服务。电信、计算机网络、因特网和各种其它方式的通信和计算的融合是目前的大势所趋。而且随着许多国家对电信业的开放和新型计算与通信技术的发展,电信 市场正在迅速扩张并越发竞争激烈。因此,利用数据挖掘技术来帮助理解商业行为、确定电信模式、捕捉盗用行为、更好的利用资源和提高服务质量是非常有必要的。分析人员可以对呼叫源、呼叫目标、呼叫量和每天使用模式等信息进行分析,还可以通过挖掘进行盗用模式分析和异常模式识别,从而可尽早发现盗用,为公司减少损失。
【编辑推荐】