AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox

发布于 2024-6-3 09:33
浏览
0收藏

虽然多模态大模型都能挑西瓜了,但理解复杂文档方面还是差点意思。


面对文字密集、多栏混排等文档时往往力不从心,区域级别的细粒度理解,就更是无从谈起了。


最近,旷视团队打造了一支多模态大模型的“点读笔”——Fox,轻松实现对8页文档(中英混合,单栏多栏格式混合的极端场景)的交互式感知理解。

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

对于信息密集的PDF文档,Fox支持高可控性的细粒度理解,比如在用户感兴趣区域内进行文字识别、段落翻译以及页面内部的图片内容描述等。


论文中,团队进一步突破了对于文档的视觉感知理解的上限,高密度的信息被真正压缩,LVLM真正地“看”懂图,才能真正做好、做出能用的文档多模大模型。


正所谓“一图胜千言”—— one image token >> one text token

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

接下来,看看Fox在实战中表现如何?

中英混排,单栏多栏组合都不怕

对于中英混合、单栏多栏混合的8页PDF文档,可实现任意区域的OCR:

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

下图左侧展示了8页文档内跨页的VQA,右侧展示了双栏中文页面的前景OCR。

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

双栏密集英文页面的前景OCR:

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

在页面内图片描述方面,Fox能给出文档内内容关联的回答(young Dual Language Learners)。


当然Fox还支持line-level OCR,以及对RoI区域的翻译、总结等。

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

Fox可以结合页面内文字,认识到这是一张关于global seismic hazards的图。此外,Fox还支持RoI内的latex格式转换,例如下面的table转latex。Fox还支持更加灵活的颜色引导的RoI区域OCR。

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

对于卡通绘本,也可以哪里不会点哪里:

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

电影海报和自然场景的对话问答,Fox给出了非常有趣的答案(根据电影海报下面的文字给出了角色来源):

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

那么Fox是如何做到这些的呢?

多词表协同,多页面文档统一打包

在细粒度文档理解上,Fox有着三大创新:

  • 精准定位

Fox引入了一系列基于位置的文本提示,如点击位置、拖动框、涂色框等。这使得模型可以直接定位到感兴趣的任意区域,而不受文档格式的限制。同时,Fox还把全页OCR重新定义为”前景聚焦”任务,进一步增强了对密集文字的感知。

  • 多视觉词表协同

为了更好地理解图文混排页面,Fox采用了两个不同特长的视觉词表——CLIP主攻自然图像,Vary专攻人工文档。但单纯叠加两种数据,往往会造成视觉偏置。为此,Fox合成了大量含混合视觉元素的数据,迫使两个视觉分支充分协作。

  • 页面打包

得益于高压缩率(每页1024×1024图像对应256个图像token),Fox将多页面文档统一打包输入。这不仅让跨页面的上下文理解成为可能,也大幅降低了计算开销。值得一提的是,这种打包微调模式并不需要重新训练视觉词汇。

在这些创新基础上,Fox模型结构如图所示。

AI读论文新神器:多栏密集文字、中英图文混排文档都能读的多模态大模型Fox-AI.x社区

Fox支持单页/多页文档图像输入,所有图像的image token被统一到一个sequence中进行多页文档理解。团队设计了基于point、color、box的prompt,来实现在文档页面上聚焦任意位置。团队合成了图文交织的文档数据,来充分催化两个视觉词表,以更好地适用于实际文档应用场景。


此外,为了促进对文档细粒度理解的研究,作者还打造了一个中英双语的benchmark,已经开源了数据和评测代码,共包含以下9种任务:

  • Page-level OCR
  • Region-level OCR
  • Line-level OCR
  • Color-guided OCR
  • Region-level translation
  • Region-level summary
  • In-document figure caption
  • Multi-page multi-region OCR
  • Cross-page VQA

最后,团队呼吁更多的研究人员能关注到细粒度的单页/多页文档理解,单页的稀疏的问答任务远远不够。


真正做好多模态大模型,视觉编码器的信息压缩率(token转化率)是非常重要的,Fox仅探究了文档这一类应用方向,希望对大家的研究有所帮助。


想了解更多细节,请查看原论文。


论文地址:​​https://arxiv.org/abs/2405.14295​​​
代码地址:​​​https://github.com/ucaslcl/Fox​​​
项目主页:​​​https://ucaslcl.github.io/foxhome/​


本文转自 量子位 ,作者:量子位


原文链接:​​https://mp.weixin.qq.com/s/DZAR3Lc9d1JCYTvVljFGng​

标签
收藏
回复
举报
回复
相关推荐