部署满血DeepSeek R1的避坑指南-vLLM 0.7.1

发布于 2025-2-6 15:33
浏览
0收藏

今天看到vLLM的朋友圈发布了DeepSeek R1的PP支持,立刻开始我的捣鼓之旅,假如我训练的超大MoE上线了,也得做好技术准备工作是不嘛。把踩坑经验给大家分享一下,希望能够相比于官方文档更白话一点。

Distributed Inference and Serving: https://docs.vllm.ai/en/latest/serving/distributed_serving.html#running-vllm-on-multiple-nodes

知乎@游凯超 说一定要让整个过程变得丝滑无比,我俩配合做了几个验证,现在应该只需要 Step0 和 Step3 就可以run起来了,如果遇到autoscalar的相关问题可以看Step1可以解决。

Step 0 Prepare weights & Environment

由于权重太大了,即使你网速可以,也不建议直连下载了。大家可以先从HF及或代理弄一份权重回来,直连大概率直接超时或者把公网IP打爆。我们今天展示的多机多卡8xH20 (x2) 部署,对应TP size 8,PP size 2,所以要搞两台这样的机器过来。同时有一个假设:两机的网络互通,不一定需要IB,储存需要共享(NAS或OSS均可),完成准备工作之后便可以做第一步。

Step 1 Setup up Ray & Cluster

官方文档里面简单带过了这一部分,但这个是我被卡时间太久的问题。首先我说一下官方文档的意思,就是让你准备好两个节点,之间用ray start这个CLI去建立好ray集群。因为后面要用,但是比较坑的有两点,第一点是启动的命令似乎有点点问题,我在前几次尝试的时候都遇到了Ray的autoscaler报错的问题:

(autoscaler +1m19s) Error: No available node types can fulfill resource request {'node:33.18.26.153': 0.001, 'GPU': 1.0}. Add suitable node types to this cluster to resolve this issue.
(autoscaler +1m54s) Error: No available node types can fulfill resource request {'GPU': 1.0, 'node:33.18.26.153': 0.001}. Add suitable node types to this cluster to resolve this issue.
(autoscaler +2m29s) Error: No available node types can fulfill resource request {'GPU': 1.0, 'node:33.18.26.153': 0.001}. Add suitable node types to this cluster to resolve this issue.
INFO 02-02 09:39:14 ray_utils.py:212] Waiting for creating a placement group of specs for 150 seconds. specs=[{'node:33.18.26.153': 0.001, 'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}, {'GPU': 1.0}]. Check `ray status` to see if you have enough resources.

这看起来就很奇怪,因为vLLM找Ray集群要的Resource是custom resource,'node:33.18.26.153':0.001,这可以理解成vLLM优先要driver节点。但是这个东西我印象中是需要启动ray的时候自己设置的:

https://docs.ray.io/en/latest/ray-core/scheduling/resources.html#custom-resources

像这样才会有这种resource。背后的原因是对于多(虚拟)网卡的机器会有多个网段,vLLM assume使用POD IP来做Ray的master寻址。

解法1:设置 VLLM_HOST_IP

# Get local IP address and set on every node before Ray start
VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
export VLLM_HOST_IP

解法2:魔改Ray启动逻辑

def get_actual_ip():
    """Get the actual IP address of the current machine."""
    try:
        # Create a socket to connect to an external server (doesn't actually connect)
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        s.connect(('8.8.8.8', 80))
        ip = s.getsockname()[0]
        s.close()
        return ip
    except Exception:
        # Fallback to hostname-based IP resolution
        return socket.gethostbyname(socket.gethostname())

def start_ray_cluster():
    free_ports = get_free_ports()
    port = free_ports[0]
    node_manager_port = free_ports[1]
    master_addr = get_master_addr()
    rank = get_rank()
    node_ip = get_actual_ip()  # Use the new function to get actual IP
    
    # Define custom resource based on node IP
    resource_spec = f'--resources=\'{{"node:{node_ip}": 1}}\''
    
    if rank == 0:
        cmd = f"ray start --head --port={port} --node-ip-address={master_addr} --node-manager-port {node_manager_port} --node-name={master_addr} {resource_spec}"
    else:
        cmd = f"ray start --address={master_addr}:{port} --node-manager-port {node_manager_port} --node-name={get_addr()} {resource_spec}"
    
    if ray.is_initialized():
        print("Ray is already initialized, skipping node level init.")
    else:
        stop_cmd = "ray stop"
        execute(stop_cmd, check=True)
        print(f"Executing Ray start command: {cmd}")
        execute(cmd, check=True)

其中execute可以这样写,

import time
import subprocess

def execute(cmd, check=False, retry=1):
    ret = subprocess.run(cmd, shell=True, capture_output=True, text=True, check=check)
    state = ret.returncode == 0
    msg = ret.stdout if state else ret.stderr
    if not state and retry > 1:
        print(f"execute {cmd} got error {msg}, retry...")
        time.sleep(1)
        return execute(cmd, check, retry-1)
    return state, msg

然后这里我稍微提一下ray的一些基础玩法:大家在使用Ray的时候一般都不是在裸机上面的,大部分深度学习的资源都是k8s结合kubeflow或者volcano这样的插件分发出来的。环境变量里面会有当前是第几个rank,头结点master_addr这样的信息,大家可以根据自己的需要把这些函数实现一下。比较坑的 {resource_spec} 这里我已经替大家把坑给填了。

Step 2 Other small bugs

期间又报了两个错误,花了一点时间修复:

Traceback (most recent call last):
  File "/usr/local/bin/vllm", line 5, in <module>
    from vllm.scripts import main
  File "/usr/local/lib/python3.10/dist-packages/vllm/__init__.py", line 4, in <module>
    from vllm.engine.async_llm_engine import AsyncLLMEngine
  File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 15, in <module>
    from vllm.engine.llm_engine import (DecoderPromptComponents, LLMEngine,
  File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 24, in <module>
    from vllm.engine.output_processor.interfaces import (
  File "/usr/local/lib/python3.10/dist-packages/vllm/engine/output_processor/interfaces.py", line 6, in <module>
    from vllm.engine.output_processor.stop_checker import StopChecker
  File "/usr/local/lib/python3.10/dist-packages/vllm/engine/output_processor/stop_checker.py", line 6, in <module>
    from vllm.transformers_utils.tokenizer import AnyTokenizer
  File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizer.py", line 13, in <module>
    from vllm.transformers_utils.tokenizers import (BaichuanTokenizer,
  File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizers/__init__.py", line 2, in <module>
    from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
  File "/usr/local/lib/python3.10/dist-packages/vllm/transformers_utils/tokenizers/mistral.py", line 9, in <module>
    from mistral_common.tokens.tokenizers.mistral import ChatCompletionRequest
  File "/usr/local/lib/python3.10/dist-packages/mistral_common/tokens/tokenizers/mistral.py", line 32, in <module>
    from mistral_common.tokens.tokenizers.multimodal import (
  File "/usr/local/lib/python3.10/dist-packages/mistral_common/tokens/tokenizers/multimodal.py", line 6, in <module>
    import cv2
  File "/usr/local/lib/python3.10/dist-packages/cv2/__init__.py", line 181, in <module>
    bootstrap()
  File "/usr/local/lib/python3.10/dist-packages/cv2/__init__.py", line 175, in bootstrap
    if __load_extra_py_code_for_module("cv2", submodule, DEBUG):
  File "/usr/local/lib/python3.10/dist-packages/cv2/__init__.py", line 28, in __load_extra_py_code_for_module
    py_module = importlib.import_module(module_name)
  File "/usr/lib/python3.10/importlib/__init__.py", line 126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
  File "/usr/local/lib/python3.10/dist-packages/cv2/typing/__init__.py", line 171, in <module>
    LayerId = cv2.dnn.DictValue
AttributeError: module 'cv2.dnn' has no attribute 'DictValue'

一个opencv封建余孽的问题,pin住opencv的版本来解决

pip install opencv-python-headless==4.5.4.58

还有一个load之后报TypeError的问题

[rank0]:   File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/deepseek_v3.py", line 472, in forward
[rank0]:     kv_c, k_pe = self.kv_a_proj_with_mqa(hidden_states)[0].split(
[rank0]:   File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
[rank0]:     return self._call_impl(*args, **kwargs)
[rank0]:   File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1747, in _call_impl
[rank0]:     return forward_call(*args, **kwargs)
[rank0]:   File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/linear.py", line 246, in forward
[rank0]:     output = self.quant_method.apply(self, x, bias)
[rank0]:   File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/fp8.py", line 357, in apply
[rank0]:     return apply_w8a8_block_fp8_linear(
[rank0]:   File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/utils/fp8_utils.py", line 61, in apply_w8a8_block_fp8_linear
[rank0]:     output = w8a8_block_fp8_matmul(q_input,
[rank0]:   File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/utils/fp8_utils.py", line 470, in w8a8_block_fp8_matmul
[rank0]:     configs = get_w8a8_block_fp8_configs(N, K, block_size[0], block_size[1])
[rank0]:   File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/layers/quantization/utils/fp8_utils.py", line 407, in get_w8a8_block_fp8_configs
[rank0]:     device_name = current_platform.get_device_name().replace(" ", "_")
[rank0]: TypeError: a bytes-like object is required, not 'str'

通过升级 pynvml 解决

pip install pynvml -U

Step 3 Run the model

这一步反而是最简单的:

vllm serve /your/path/to_checkpoint_deepseek-r1/ --tensor-parallel-size 8 --pipeline-parallel-size 2 --trust-remote-code --host 0.0.0.0

由于有了PP加持,没有IB的同学也可以尝试把sequence length和bsz给稍微拉大一些拉。用gaoce哥哥贡献的Reasoning Output,在同一台机器来试一把,或者换一台机器把localhost改了:

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(model=model, messages=messages)

reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content

print("reasoning_content:", reasoning_content)
print("content:", content)

对,你不是卡主了,是你的钱包不够厚。切到后台可以看到,这个prompt里面

INFO 02-02 14:18:52 metrics.py:453] Avg prompt throughput: 1.7 tokens/s, Avg generation throughput: 0.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:18:57 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.7 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:02 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.5 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:07 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.5 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:12 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 20.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.0%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:17 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 19.8 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.1%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:22 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 19.4 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.1%, CPU KV cache usage: 0.0%.
INFO 02-02 14:19:27 metrics.py:453] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 19.1 tokens/s, Running: 1 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cacheusage: 0.1%, CPU KV cache usage: 0.0%.

稍等一会他就会告诉你9.8更大了。

祝大家捣鼓顺利,感谢vLLM社区的工作。

https://github.com/vllm-project/vllm/pull/12679

凯超真 nb 春节在这做贴身客服,哈哈,RL仔现在不管原来是主修文还是主修理的,都先修infra吧。

本文转载自 NLP工作站​,作者: 曹宇

收藏
回复
举报
回复
相关推荐