基于Agent的金融问答系统:项目简介 原创

发布于 2024-11-22 15:39
浏览
0收藏

前言

历经27天,我们小组所做的金融问答系统项目已经告一段落,目前该项目在天池大赛排行榜暂列56名,虽然排名还比较靠后(还有很多地方可以优化),但是整个项目的实战锻炼还是收获不少。

因此,我计划将 从零构建问答系统 的这一过程总结分享出来,既是对过去的成果总结,也是抛砖引玉,为其他AI从业人员及爱好者提供参考。

文章目录

整个项目实战过程中,我们还是运用了非常多的新老技术以及软件工程理念,例如:

  • AI相关:​​Agent​​ 、​​RAG​​ 、​​Prompt​​......
  • 传统开发:​​Docker​​、​​ElasticSearch​​ 、​​Vue.js​​ ......
  • 软件工程理念:​​TDD测试驱动开发​​ 、​​代码重构​​、​​Python代码规范​​.....

可以总结分享的内容很多,所以我计划将整个内容分为以下几部分分别介绍:

  • 第一章:基于Agent的金融问答系统:项目简介
  • 第二章:基于Agent的金融问答系统:RAG检索模块初建成
  • 第三章:基于Agent的金融问答系统:Agent框架的构建
  • 第四章:基于Agent的金融问答系统:前后端流程打通
  • 第五章:基于Agent的金融问答系统:代码重构
  • 第六章:基于Agent的金融问答系统:RAG的检索增强之ElasticSearch
  • 第七章:基于Agent的金融问答系统:RAG的检索增强之上下文重排和压缩

项目目标

需求痛点

在金融行业的投资研究领域,AI正在逐步推广应用。相比传统的投资研究,通过人工智能技术,可帮助客户大大提高投资研究效率。

基于Agent的金融问答系统:项目简介-AI.x社区

传统投资研究的问题

  • 流程较长,依赖于专业研究人员
  • 可处理的数据范围小,一般只能处理结构化的金融数据库数据

智能投资研究的优势

  • 无需专业投资研究人员,客户直接使用应用AI技术的金融工具即可
  • 使用无门槛,输入自然语言给到金融工具,由AI进行智能分析、获取、处理以及结果输出
  • 除了支持结构化的金融数据库之外,还可以支持非结构化的数据(如招股书、爬虫数据等等)

备注:以上信息来自于(《金融服务行业深度报告:智能投研调研报告人工智能在投研的应用》)。

基于以上的痛点需求,我们计划开发一个金融问答系统,使得用户可以通过工具输入自然语言,直接由AI进行用户问题的分析、信息查询、结果输出。

天池大赛

天池大赛刚好有与上述需求痛点和场景非常契合的赛事

  • 赛事地址:基于LLM智能问答系统学习赛
  • 赛事内容:

基于Agent的金融问答系统:项目简介-AI.x社区

项目成效

启动后端服务演示

提问信息查询类问题的演示

Agent搜索到答案的演示

提问SQL查询类问题的演示

Agent进行SQL查询的演示

其他信息

代码已提交至Gitee,欢迎大家Star和Fork。

  • • Gitee仓库:https://gitee.com/deadwalk/smart-finance-bot
  • • Github仓库:https://github.com/domonic18/smart-finance-bot

本文转载自公众号一起AI技术 作者:Dongming

原文链接:​​https://mp.weixin.qq.com/s/7d3PD-5q_K3rVTmr472YoQ​


©著作权归作者所有,如需转载,请注明出处,否则将追究法律责任
标签
收藏
回复
举报
回复
相关推荐