
GLM4模型开源,意料之中的尺寸,意料之外的效果
今天智谱开了GLM-4-9B的模型,不是6B,是9B。
一共开源了四个模型,Base版本模型(GLM-4-9B)、Chat版本模型(GLM-4-9B-Chat和GLM-4-9B-Chat-1M)和多模态模型(GLM-4V-9B-Chat)。
其中,模型为多语言模型除了支持中文、英文之外,还支持日语,韩语,德语在内的26种语言;Chat系列模型支持网页浏览、代码执行、自定义工具调用(Function Call)的能力;GLM-4V-9B模型支持中英双语多轮对话能力。
模型说明
GLM-4-9B模型的结构与GLM-3-6B模型结构一致,主要修改为模型层数、词表大小、支持更长的上下文。
- 词表由65024增加到151552;
- 模型层数由28增加到40;
- 最大长度之前的32K、128K到128K、1M。
模型的License还是免费学术研究、商业需要登记,但必须遵守相关条款和条件,与GLM3一致。
效果说明
效果一句话总结,全面领先Llama-3-8B模型,全面领先上一代ChatGLM3-6B模型。(这让我更加期待过两天即将开源的Qwen2系列模型的效果啦,开源真的越来越好了)
下面效果来自于官方Github效果截图。
在Base和Chat模型上,GLM-4-9B均优于Llama-3-8B模型。
Base
Chat
1M模型上进行大海捞针,效果全绿。
工具调用上,也是优于Llama-3-8B模型。
最后是GLM-4V-9B多模态模型效果,全面领先前一阵爆火的面壁MiniCPM-Llama3-V2.5多模态模型(毕竟斯坦福都来抄)。
现在这些榜单的效果虽然可以展现出来一定能力,但我还是更相信对战榜单,后面不知道lmsys上会不会有GLM-4-9B-Chat的效果,真实场景中PK一把,看看谁弱谁强。
快速调用
直接transformers走起,以GLM-4-9B-Chat模型为例。
赞
收藏
回复

回复
相关推荐